QT21: Quality Translation 21

A European Digital Single Market free of barriers, including language barriers, is a stated EU objective to be achieved by 2020. The findings of the META-NET Language White Papers show that currently only 3 of the EU-27 languages enjoy moderate to good support by our machine translation technologies, with either weak (at best fragmentary) or no support for the vast majority of the EU-27 languages. This lack is a key obstacle impeding the free flow of people, information and trade in the European Digital Single Market which results in a drastic drop in translation quality.

QT21 addresses this grey area by developing substantially improved statistical and machine-learning based translation models for challenging languages and resource scenarios and improved evaluation and continuous learning from mistakes, guided by a systematic analysis of quality barriers, informed by human translators. The project focuses on scalability to ensure that learning and decoding with these models is efficient and that reliance on data (annotated or not) is minimised.

To continuously measure progress, and to provide a platform for sharing and collaboration (QT21 internally and beyond), the project revolves around a series of Shared Tasks, for maximum impact co-organised with WMT. To support early technology transfer, QT21 proposes a Technology Bridge linking ICT-17(a) and (b) projects and opening up the possibility of showing technical feasibility of early research outputs in near to operational environments.

Learn more: http://www.qt21.eu/

  • Start date: 1 Feb 2015
  • PI: Qun Liu (DCU) - Partner
  • Acronym: QT 21
  • Title: Quality Translation 21
  • Website: http://www.qt21.eu/
  • CORDIS: https://cordis.europa.eu/project/id/645452
  • Grant ID: 645452
  • Overall budget: €3,997,428
Project Contact
  • Qun Liu (DCU)