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Abstract

Multimodal machine learning aims to improve the performance of a model, including accuracy, precision, and robustness,
that is trained using multiple modes of data such as audio, video and text. Recent research has improved these measures by
focusing on the intersection of information between modalities. However, there is a lack of research that focuses on how a
multimodal model utilizes unique modality information and how a target task changes the distribution of relevant modality
information. Understanding the relevancy of each modality can help with the development of future multimodal models,
quantifying model robustness when a modality is missing and understanding how the inference process depends on each
modality. This paper investigates how multimodal models learn within and across modalities and how the distribution of
relevant information per modality changes depending on the target task being carried out. To achieve this, two multimodal
classifiers were trained for three different tasks using audio and video. Using these models, we demonstrate that depending
on the target task, the amount of relevant modality information will change and that an individual modality may contain

more relevant information than the intersection of all modalities for predicting the ground truth.
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1. Introduction

Understanding the individual modalities and the infor-
mation they contain is crucial for multimodal machine
learning. Each modality will contain information relat-
ing to the target task, and how modality information is
fused will influence how a multimodal model performs.
In recent years, the literature has approached the chal-
lenge of understanding modalities and their information
in various ways, each with its own merits. Each ap-
proach takes a different viewpoint on how the informa-
tion should be used within and across modalities and are
not necessarily mutually exclusive to each other. These
approaches include focusing on the intersection of in-
formation between modalities, i.e. mutual information
and attempting to balance the contribution of dominant
modalities towards a learning objective, i.e. imbalanced
information. The Venn diagrams in Figure 1 illustrate
these two approaches and the relationships between the
information of each modality for a given task. Each cir-
cle represents all the information (relevant to the task)
contained within a modality. The intersection of a group
of modalities represents the information shared between
them, with the centre containing the information they
all share. The non-intersecting parts of each circle rep-
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resent the unique information contained per modality.
Then, the area outside the circles represents all the other
information irrelevant to the task.

A significant portion of multimodal research deals with
problems that cause poor performance when multiple
modalities are involved. These problems include how
can you work with modalities that are represented in a
fundamentally different way [1, 2, 3] and how can infor-
mation be translated from one modality to another to
achieve effective learning [4, 5, 6]?

These challenges are often amplified in real-world
applications, as reasonable assumptions made in mul-
timodal research often become limiting when applied
in a real-world system. For example, assuming that the
underlying conditional distributions of the modalities are
the same or at least similar[7, 8, 9], or that each modal-
ity/view contains enough information to accurately carry
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Figure 1: Different views of information in multimodal ma-
chine learning.
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out a task[10, 11, 12]. Others take the view that the inter-
section of the information/representations of the modal-
ities contains the ground truth/optimal intersection of
information for a task[13, 14]. All of these assumptions
fail to acknowledge that the unique information con-
tained within a modality might be more relevant than
others when performing a task.

Other works describe the potential causes of poor per-
formance in multimodal classification networks, such as
multimodal models being prone to overfitting due to their
increased capacity, which is compounded by the different
generalisation rates of the modalities[14], or that there
is insufficient structure in some modalities that leads to
poor performance[15]. This paper takes the view that for
a given observation of modalities, one modality might
contain very little relevant information, whereas another
contains the majority of relevant information. However,
this is counteracted by the way in which multimodal
models learn, i.e. there is no guarantee that a model will
utilize information in a way that we would expect.

Two multimodal classifiers are implemented to under-
stand better the impact of modality relevancy and imbal-
anced modality information, one binary and the other
multi-class. The binary classifier was trained for two
different classification tasks (urban vs. rural and speech
vs. non-speech) using the same data from the AudioSet
data set[16]. Using the same data for both tasks, with
the only difference being the target label, we can investi-
gate how the underlying, relevant information changes
depending on the target task. These labels were selected
as they had the potential to represent tasks that were
vision-based (urban vs. rural) and audio-based (speech
vs. non-speech). To gain further insight into modality
relevancy and imbalanced modality information, from a
more challenging task, the binary classification task was
extended to a multi-class classification task. The multi-
class classifier was trained on the Kinetics-Sounds[17]
data set, which contained the video and corresponding
audio of 26 human-action classes, such as “playing gui-
tar”, “laughing” and “singing”. Once the models were
trained, a leave-one-out approach was adopted in order
to determine how much the multimodal models relied on
the information coming from each modality. Our results
show that:

1. Depending on the task, the amount of relevant in-
formation present within a modality will change.

2. There is no guarantee that using a good video
model and a good audio model will create a good
audio-visual model.

3. We provide experimental results that show that
multimodal models can ignore almost entire
modalities during training and inference, despite
the individual modalities being capable of carry-
ing out the target task.

4. We provide early results for the impact of repre-
senting missing data for audio/visual tasks.

The remainder of the paper is organised as follows: Sec-
tion 2 details the related works, section 3 describes the
models and data sets used for the experiments, section
4 describes the experiment methodology, section 5 then
presents the results and a discussion around them and
finally, section 6 concludes the work and details several
future research directions.

2. Related Works

This section details related works in the areas of multi-
modal information and multimodal machine learning.

2.1. Multimodal Information

Understanding the individual modalities and the infor-
mation they contain is crucial for multimodal machine
learning. Each modality will contain information relat-
ing to the target task and how modality information is
fused will influence how a multimodal model performs.
An assumption often seen in multimodal learning is that
each modality is conditionally independent with respect
to some common ground truth label. While each modal-
ity is independent of the others, they all agree on one
thing: a ground truth label. Research has used the idea
of common ground between modalities to propose so-
lutions that optimise the learning process based on the
intersection of modality information.

Total Correlation Gain Maximisation(TCGM) is a novel
information-theoretic approach to multimodal machine
learning[13]. Using the previous assumption, they pro-
pose that the information intersection of modalities will
contain the best approximation of the ground truth as
it is the information they agree on the most. By max-
imising the total correlation gain across each modality
classifier, they all cooperatively discover the information
intersection. Another novel classification architecture is
Cross Partial Multi-View Networks (CPM-Nets)[18]. The
architecture utilises the assumption that the information
per view/modality originates from a fused latent repre-
sentation of the views/modalities. To handle complex
correlations between views/modalities, the architecture
focuses on learning a complete and versatile fused rep-
resentation of the data. Another approach, aimed at
determining when and why multimodal models outper-
form their unimodal counterparts, takes the intersection
of information assumptions and puts it into the context
of latent spaces[14]. They propose that the latent space
of each modality is contained within the latent space of
the fused modalities. They then propose a novel metric,
latent representation quality to measure the distance be-



tween a learned latent representation g and a true latent
representation g*.

2.2. Multimodal Machine Learning

Multimodal machine learning aims to build models that
can process and understand information from multiple
modalities, similar to how humans learn and reason. Each
modality contains information that is relevant to the task
being carried out. The information contained per modal-
ity can be divided into two groups: information unique to
the modality and information that is present in the other
modalities. This information divide raises challenges to
the efficacy of a multimodal machine learning model.

A survey [19] on the current state of multimodal learn-
ing identifies the following general challenges in multi-
modal machine learning: Representation; how to work
with modalities that are often complementary but are fun-
damentally different in how they are represented [20, 21],
Translation; how to map the information from one
modality to another [4, 5], Alignment; how to identify
the direct (and indirect) relations between elements of
different modalities [20, 22], Fusion; how to join informa-
tion from multiple modalities [23, 24] and Co-learning;
how to transfer information from one modality to an-
other, their representations and models that use them
[25, 26].

Many multimodal machine-learning solutions have
been proposed in the literature in recent years. Unsuper-
vised machine learning techniques such as variational
autoencoders have been used for a wide range of tasks,
such as detecting fake news [27], anomaly detection [28]
and annotating mass spectra in chemistry [29]. Other
works have explored combining techniques/models such
as convolutional LSTMs with an autoencoder architec-
ture [30], or where two unsupervised models (one for
each modality) are trained for image-to-image translation
in autonomous vehicles [31].

As the amount of available multimodal informa-
tion increases, labelling each modality becomes time-
consuming and costly. Semi-supervised learning is often
used to solve this large-scale labelling problem in uni-
modal and multimodal learning. To alleviate the problem
of not having enough data, semi-supervised learning
often involves training a small, supervised classifier to
generate labels for unlabeled data. This is a challenge
in unimodal learning, which is amplified in multimodal
learning. For example, [8] utilizes a supervised classi-
fier per modality to generate labels for unlabeled data.
However, they do not account for the possibility that the
modalities do not share the same conditional distribu-
tions for the data point labels. Other approaches focus on
learning a joint representation, which projects the modal-
ities into a multimodal space [14]. Then a classifier is
trained using labelled data to predict the joint representa-

tion. Another learning approach subdivides an unlabeled
input data set and then clusters these divisions based on
their fuzziness[32, 33]. Those with a low fuzziness are
considered “better” samples and are then labelled using
a classifier which has been trained on a smaller, labelled
data set.

Supervised learning methods such as Canonical and
Deep Canonical Correlation Analysis (CCA/D-CCA)
[34, 35] maximise the canonical correlations between
modalities, with D-CCA also accounting for the non-
linear relationships between modalities. Subspace learn-
ing [36] utilises matrix factorisation to factorise modal-
ities into a modality-invariant and a modality-specific
part. The invariant part is then used by the predictive
model. Knowledge distillation is a method of transferring
knowledge from one or more models to another and has
traditionally been used for model compression. However,
in recent years, it has been explored as a method of mul-
timodal learning. When used for multimodal learning,
each expert model produces a soft label which is given to
the student model during training [37]. The soft label is
used as part of the loss function of the model and is meant
to provide a metric for how close a student’s prediction
is to an expert prediction.

To prevent overfitting while also accounting for the
difference in generalization rates a gradient blending ap-
proach, which computes an optimal blending based on
their overfitting characteristics, is proposed [38]. While
the approach offers state-of-the-art performance for var-
ious multimodal tasks such as human action recognition
and acoustic event detection, there is room for further
investigation with regard to how the approach performs
with missing data and identifying a root cause for the
overfitting.

Current state-of-the-art approaches in literature have
made good progress in attempting to understand and use
the information contained within modalities. However,
the research gap still exists in relation to understanding
how multimodal models use the information available to
them and how they can be trained in such a way as to
make effective use of the varying amounts of information
available from all modalities with respect to a target task.

3. Data sets & Models

This section details the data sets used and the models
implemented as part of the experiments conducted in
this paper. Each convolutional and linear, excluding the
output layers, is followed by a ReLU activation layer.
Full details on the model parameters are provided in the
Appendix.



3.1. Data Sets

AudioSet is a sound and vocabulary data set consisting
of an expanded ontology of 632 audio event classes and a
collection of over 2M+ human-labelled 10-second sound
clips drawn from YouTube videos. Each entry in the data
set can have several audio event labels. There are two
major points to note about AudioSet. The first is that
it is possible for videos, from which the audio clips are
taken, to no longer be available for a variety of reasons
such as the video being made private or being removed
from YouTube. The second is that there is likely modal-
ity bias in how the labels were assigned for each audio
clip. The way in which human labellers assigned labels
involved them both listening and watching the video clip.
This means an audio event label was potentially assigned
using both the audio and visual modality.

A subset of entries from AudioSet was taken that
contained the labels “urban” or “rural”. After filtering
unavailable videos and corrupted downloads, the final
urban-rural subset contained 7276 samples, with a 50/50
label split. Then for the purpose of further evaluation,
the urban-rural subset had the labels changed to “speech”
and “non-speech®. Since each data set entry has multiple
labels, these labels were retrieved from the other labels
of a given entry. Non-speech is the absence of a speech
label. This label change results in a class imbalance of
61/39 in favour of speech.

All of the downloaded audio samples were sampled
at 16000Hz with a single channel and a duration of 10s.
All of the downloaded videos had a resolution of 420p
and a duration of 10s. Prior to training the video model,
8 frames of the 10s clips were taken using a uniform
temporal sample, normalized, scaled to a common size
and a centre crop operation performed. The resulting
images were then converted to a feature representation
using the pre-trained ResNet50 model and saved locally
to reduce training time. The ResNet features were then
used as input to the video mode

Kinetics-Sounds is a subset of the Kinetics data set
[39] containing 19k (15k train, 1.9k validation and 1.9k
test) 10-second clips formed by filtering on a set of human
action classes that potentially manifest both visually and
aurally, for example, “playing guitar”, “laughing” and
“typing”. The same pre-processing steps were used for
the kinetics-sounds audio and video samples as for the
AudioSet samples. The full list of classes can be found in
the Appendix.

3.2. Multimodal Knowledge Distillation
Model

The first model implemented is a multimodal knowl-

edge distillation model. The model design is based on
the knowledge distillation model proposed in [37]. The

model used in this experiment consists of an expert video
model, an expert audio model and then a multimodal stu-
dent model which learns from the experts. Knowledge
distillation was selected as the learning method as it
has shown promising results in the literature and also
reflects the human sensory system in terms of having
expert senses that are then fused together to provide
multimodal perception.
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Figure 2: Left: CNN Audio Model. Centre: Multimodal
Knowledge Distillation Model. Right: ResNet Video Model.
The ResNet Video Model and CNN Audio Model are the ex-
pert teachers with the Multimodal model being the student
learner.

The student multimodal model (centre in Figure 2)
consists of two separate fully connected layers, one for
the audio input and one for video input. The outputs of
these layers are then fused (late feature concatenation)
to produce the final prediction.

The expert audio model (left in Figure 2) is composed
of a single 2D convolutional layer followed by two fully
connected layers. When more complex architectures,
similar to those seen in audio classification literature
[40, 41, 42], were used, the model failed to learn a rep-
resentation of the classification problem, indicated by a
stagnant loss each epoch. Resulting from this, a simpli-
fied architecture was adopted. The CNN audio model
uses log-mel spectrograms as input features. Log-mel
spectrograms are used instead of raw audio signals as
they compress the input audio into a single image, which
contains a concise representation of the original audio.

The expert video model (right in Figure 2) is based on
a pre-trained ResNet50 model [43]. ResNet was chosen as
a pre-trained version was readily available with PyTorch
and it has also been successfully used for video/image



classification tasks in other works [44, 45, 46]. The tun-
able parameters of the ResNet model were frozen during
training and used to convert frames of the input video
into a feature vector. The ResNet feature vector is then
passed to two fully connected layers to produce a predic-
tion.

3.3. Late Fusion Model

The second model implemented is based on the multi-
modal model used in [17], but with some adjustments to
suit the target task being performed. Figure 3 illustrates
the model implemented. It consists of two sub-networks,
a video sub-network that uses ResNet50, and a CNN au-
dio sub-network that processes log-mel spectrograms.
The sub-networks outputs are naively fused before pass-
ing them through the three fully connected layers for
classification.
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Figure 3: Late Fusion Model consisting of a ResNet50 video
network and a CNN audio network. Left: CNN audio sub-
network. Centre: Late fusion and output. Right: ResNet video
sub-network

Kinetics-Sounds - Training, Inference and Miss-
ing Modality Procedure This section describes how
the Kinetics-Sounds model was trained, tested and then
tested with missing modalities.

The multimodal late-fusion model is first trained using
video and audio input. The video sub-network produces a
tensor of size 400x1 and the audio sub-network produces
a tensor of size 512x1. These tensors are fused to produce
a tensor of size 912x1 which is passed to the first fully
connected layer. The multimodal late-fusion model is
now trained.

For the purpose of evaluation, the individual sub-
networks are trained. It is important to note that the

trained sub-networks are identical to those described in
Figure 3. The only difference between the full multi-
modal models and the individual sub-networks that are
trained is the size of the first fully connected layer.
For training the video sub-network the size of the first
fully connected layer is 400x1 and for the audio sub-
network, it is 512x1. This is the only difference. All three
models, multimodal, video-only and audio-only, are now
trained.

The following steps happen at inference time. All three
models are evaluated with no missing modalities to pro-
vide baselines. Then to evaluate how the multimodal
model uses the modalities a leave-one-out approach is
used. To evaluate the model when there is only the video
modality available, the video feature gets fused with ei-
ther Gaussian noise or silence at the fusion stage. Then to
evaluate the model when there is only the audio modality
available, the audio feature is fused with either Gaussian
noise or a black video. Full details on the parameters of
all the models trained as part of this experiment can be
found in the Appendix.

4. Experiments

This section describes the objectives of each experiment
and the methodology followed when carrying them out.

Experiment 1: Binary Classification The main ob-
jectives of this experiment are to understand to what
extent a multimodal model utilises each input modal-
ity to perform a prediction and to investigate how the
underlying distribution of relevant information changes
depending on the target task when only the target label
changes.

A binary classifier was trained as a starting point for
understanding modality relevance. The aim of this exper-
iment was to investigate which modality was the most
relevant to the target task. The multimodal knowledge
distillation model described in 3.2 was trained using a
70/20/10 split. The individual modalities are passed to
their respective teacher model for each audio and video
pair used for training the multimodal model. The teacher
models produce a soft label for each modality, which is
then used in the loss function of the multimodal model.
The multimodal loss function is the summation of the
classification loss of the multimodal model for the given
sample and the distillation loss for each modality. The
distillation loss measures how close the multimodal pre-
diction was compared to that of a teacher model. The
Kullback-Leibler divergence loss was used as the distilla-
tion loss function.

This process is repeated for both the urban/rural and
speech/non-speech subsets. It is important to note that
these subsets are identical except for the label associated



with each sample. By using the same data set entries
but with different labels, we were also able to investigate
how the underlying distribution of relevant information
changes depending on the target task.

The trained models were then evaluated under the
metrics of accuracy, balanced accuracy, precision, recall
and F1-score when both modalities are present. To then
determine which/if modality was more dominant, a leave-
one-out approach was adopted. The multimodal model
was evaluated when only the video was available and
then when only the audio was available.

Experiment 2: Multi-class Classification This ex-
periment aims to investigate further how a multimodal
model uses the information within and across modalities
to perform a multi-class classification task and to gain
insights into how the multimodal model used modality
information during the training process.

In this experiment, the model described in section 3.3
was trained jointly using both modalities. Both modali-
ties were passed to their respective sub-networks before
being fused to produce a 912-D (400-D ResNet, 512-D
Audio CNN) feature and passed to the fully connected
layers for prediction. The multimodal classifier used a
negative log-likelihood loss function.

Alongside the joint training of the multimodal net-
work, the individual networks were trained for the target
task to provide an unimodal comparison. The unimodal
models were trained by connecting the sub-networks
to the fully connected layers of the model, but the first
fully connected model had a size equal to that of the
sub-network output. In the case of the video model, the
first fully connected layer had a size of 400-D and for the
audio model, a size of 512-D.

The trained multimodal model was then evaluated un-
der the metrics of accuracy, balanced accuracy, precision,
recall and F1-score when both modalities were present
and when only one of them was present.

Handling Missing Modalities Two options for rep-
resenting missing data were used to evaluate the per-
formance of the multimodal models when a modality is
missing: Gaussian noise and “appropriate defaults”. In
the case of the video modality, a black image was passed
to ResNet50 to produce a blank feature, with the intu-
ition being that a monochromatic image contains little
to no information, i.e. as close to it really being missing.
Then, for the audio model, a tensor of all zero values, i.e.
silence, was used, again the intuition being that silence
is as close to it being missing.

Baselines The baselines used for the experiments are
the unimodal models used to train the multimodal models.
The unimodal models were selected baselines for two

reasons: 1) To investigate the efficacy of multimodal
learning over unimodal learning for the same task. 2)
To investigate how multimodal models utilise and weigh
the features and representations created by the modality
sub-networks. The multimodal models trained in the
paper contain the unimodal models in their architecture.

5. Results

The following section presents the results obtained from
running the experiments outlined in section 4. Each set of
results provides an insight into how the models are using
the modalities given to them and how, even for the same
input data for the same model, modalities will be utilized
in different ways and to different extents. This section is
divided into results for experiment one and experiment
two. Each set of results is followed by a discussion of
those results.

Binary Classification of Urban vs. Rural - All
Modalities, Audio-only Model and Video-only
Model Table 1 presents the results of the urban vs.
rural binary classifiers. Firstly, for the unimodal, expert
models, it is observed that both models learn a moder-
ate representation of each modality. While the metrics
for the audio model are significantly less than the video
model, they are still better than a random guess. Sec-
ondly, for the multimodal model, it is observed that the
performance lies between the two expert models. Knowl-
edge distillation aims to distil “useful” information to
the student learners. However, this information is not
always beneficial to the student models’ performance,
as indicated by the results presented. The multimodal
mode] achieves a reasonable performance that is an im-
provement over using just audio.

Table 1
Results for the unimodal and knowledge distillation (KD) mul-
timodal models for classifying Urban vs. Rural.

;I;bu;:";l Acc. Ba}ll\acn:ed Precision Recall ScF:re
Audio Model 61.62 61.79 63.38 61.69 60.51
Video Model 77.72 77.71 77.711 77.711 77.72
AV Model 71.66 71.65 .7 71.69 71.66
Gaussian Audio 70.84 70.91 71.28 70.91 70.71
Gaussian Video 61.76 61.81 61.93 61.81 61.68
Silent Audio 71.66 71.66 71.67 71.67 71.66
Black Video 61.76 61.76 62.45 61.87 61.35

Binary Classification of Urban vs. Rural - Missing
Modalities A different understanding emerges when
a modality is withheld from the multimodal model at
inference time. A minor decrease, highlighted in bold, in
the performance metrics is observed when audio data is
missing, whereas when either Gaussian noise or a black
image is used to represent missing video data, a more
significant decrease (= 10%) in performance metrics is



observed. The different decreases in the performance
metrics provide insight into the shared representation
of audio and video created by the model. From the au-
dio model, we know a moderate representation can be
learned. However, this does not appear to have trans-
ferred to the multimodal model. The minor decrease in
the metrics caused by missing audio data indicates that
the multimodal model weighted the video input more
than the audio, to the point where it appears to almost en-
tirely ignores the contributions of the audio modality.
This occurs even though the audio model itself is capable
of performing the classification. These results, combined
with a significant drop in metrics for missing video input,
provide evidence for the impacts of imbalanced modality
information on the training of multimodal models.

Binary Classification of Speech vs. Non-Speech -
All Modalities, Audio-only Model and Video-only
Model Table 2 presents the results of the speech vs.
non-speech classifiers. Each of the unimodal experts
achieves a very similar level of performance across all
metrics. Due to the label imbalance in the speech vs. non-
speech data set the balanced accuracy should be used
instead of accuracy. When compared under balanced
accuracy, the audio model outperforms the video model
by less than 2%. Both experts appear to be equal in their
ability to classify samples as speech or non-speech. This
carries forward to the multimodal model, which, like the
urban vs. rural classifiers, sees performance metrics in
between that of the experts. It is worth noting again that
the models and data used for the speech vs. non-speech
task are identical to that of the urban-rural task.

Table 2
Results for the unimodal and knowledge distillation (KD) mul-
timodal models for classifying Speech vs. Non-Speech.

Speech & Acc. Balanced Precision Recall F1
Non-Speech Acc. Score
Audio Model 68.36 65.32 66.73 65.32 65.64
Video Model 67.54 63.67 65.95 63.37 66.31
AV Model 68.09 67.28 66.89 67.28 67.02
Gaussian Audio 64.92 61.63 62.79 61.63 61.80
Gaussian Video 63.55 63.46 62.92 63.46 63.92
Silent Audio 66.85 65.53 65.40 65.53 65.46
Black Video 63.41 62.87 62.44 62.87 62.47

Binary Classification of Speech vs. Non-Speech
- Missing Modalities The results of the multimodal
model and those of the multimodal model with missing
modalities indicate that the shared representation created
for the task of speech vs. non-speech uses information
from the different modalities more equally compared to
the urban vs. rural classifier. When a modality is miss-
ing, regardless of how it is missing, no major drop in the
performance metrics is observed. It is observed, how-
ever, that missing the audio modality results in a larger
decrease in the performance metrics. This indicates that

while the model created a more balanced shared represen-
tation, it still favours using the audio data. Contrasting to
the trained model for the urban vs. rural task, the speech
vs. non-speech model has not ignored the contributions
of the input modalities. This happens when using the
exact same input data and model architecture, with the
only difference being the target label. This shows that
depending on the target task of the model, the under-
lying distribution of relevant information changes
and the model will make use of the modalities differ-
ently. The results also provide early empirical evidence
that the choice of how a missing modality is represented
can impact performance. For the speech vs. non-speech
task, using Gaussian noise to represent missing video
and silence to represent audio resulted in less of a de-
crease in the performance metrics. Based on the results
of the binary classifiers the choice of how “nothing”
is represented is also task dependent.

Multi-class Classification - All Modalities, Audio-
only and Video-only Models Table 3 presents the
results of the multi-class Kinetics-Sounds classifiers. It is
worth noting that the chance of correctly guessing a class
at random for the Kinetics-Sounds data set is 3.8%. The re-
sults provide another view on modality relevance, shared
representation and the challenge of imbalanced modality
information. The unimodal audio classifier achieved a
final accuracy of 16.2%, which is better than guessing
at random and shows that the model implemented is
capable of learning a representation of the audio data.
However, in stark contrast, the unimodal video classifier
achieved consistent metrics of = 77%.

Table 3
Results for the unimodal models and late fusion model for the
Kinetics-Sounds data set.

I;:’nuer::ss Acc. Ba:\acnct.:ed Precision Recall S:«:re
Audio Model 16.22 16.04 4218 16.04 11.73
Video Model 77.2 76.73 78.27 76.73 76.92
AV Model 77.35 76.89 78.36 76.89 77.04
Gaussian Audio 76.65 76.05 77.33 76.05 76.20
Gaussian Video 5.94 6.07 20.27 6.07 4.10
Silent Audio 76.65 76.05 77.33 76.05 76.20
Black Video 6.29 6.88 83.61 6.88 2.82

Multi-class Classification - Missing Modalities
Building from these unimodal results, the multimodal
model, trained by means of late fusion, marginally out-
performs the unimodal video model. However, a similar
phenomenon to that of the video-only results of the urban
vs. rural classifier is observed, i.e. there is no meaning-
ful decrease in the performance metrics when the
audio modality is missing,.

Like the urban vs. rural classifier, the results of the
unimodal audio demonstrate that the model can learn
from the audio, but when there is no audio modality



present, the multimodal model still performs the target
task with the same accuracy as having the audio data
present. This again indicates the final multimodal model
did not balance the information from both modal-
ities. This imbalanced use of modality information is
further exemplified by the significant drop in the per-
formance metrics when the video modality is missing.
A drop of = 70% is observed for all metrics excluding
precision, which dropped by = 60%. There is no differ-
ence recorded in using Gaussian noise versus silence for
representing missing audio. There is a minor difference
recorded across all metrics, excluding precision, between
using Gaussian noise or a black image.

To better understand the performance of the models,
Figure 4 presents a breakdown of the accuracies per label
for the multimodal model, the multimodal model with
missing audio or video (silence and black video) and the
audio-only and video-only models. The results clearly
show the disparity between how the multimodal model
treats audio versus video.

In Figure 4 it can be seen for the majority of the classes
the multimodal model and the audio-only model (which
is a sub-network of the multimodal model) have not rep-
resented the audio modality in the same way. The classes
in which the audio-only model showed the best perfor-
mance (“playing bagpipes”, “playing bass guitar”, and
“playing trombone”) still had good performance even
when the audio was missing in the multimodal model.
The majority of the remaining classes were not accurately
predicted by the audio model but were predicted with
reasonable to high accuracy by the multimodal model,
even when audio was missing. This indicates again that
for such classifications, the multimodal model relies
on the video. The opposite is then observed with the
video-only model. It accurately predicts the majority
of classes and outperforms the multimodal model for a
significant number of classes, but then when the video is
missing there is a sharp decrease in accuracy. This also
indicates that the multimodal model relies on the video
modality.

From the numerical results presented in Tables 1, 2
and 3 and the more granular breakdown of the models
in Figures 4 is clear that the way in which the models
use information from the various modalities is imbal-
anced and that in the Kinetics-Sounds model, the audio
modality was almost entirely ignored. This imbal-
ance appears to be the result of a small change (the size of
the fully connected layer), that you would not expect to
have such an impact, but does in fact, cause wildly differ-
ent results when multimodal joint learning is happening.
The assumption that if we have a “good” video net-
work and a “good” audio network, they can create
a good Audio-Visual network is incorrect.

6. Conclusion

This paper presents experimental results that provide
insight into how multimodal machine-learning models
use information from different modalities. To achieve
this, two different multimodal models were implemented
for two audio-visual data sets. The models were then
evaluated with each modality missing to determine how
the models used information from the modalities.

The results of the experiments demonstrate the inher-
ent imbalanced use of information in multimodal
models and that there is no guarantee that multimodal
models will use the information from the input modalities
equally. The results also show that it is possible for such
a model to almost entirely ignore the contributions
of a modality, even if the individual modality is capable
of carrying out the target task. This is most noticeably
observed in the urban vs. rural and Kinetics-Sounds clas-
sification tasks. The combination of the urban vs. rural
and speech vs. non-speech classification tasks empir-
ically demonstrates that depending on the target task
being performed, the amount of relevant informa-
tion present within a modality will change. We also
provide initial results that show the potential impact of
how “nothing” is represented for modalities.

Using the results and insights gained from carrying
out this research it can be extended in several ways. The
most pressing future research relates to the significant
difference in the performance metrics for the late-fusion
model with Audio Only and the unimodal Audio model.
It will involve investigating its root cause(s) by further
analysing the results and models. The results presented
in this paper showed poor performance for the audio-only
model but good enough for the purpose of the experi-
ment. A reasonable assumption is that an audio model
should be able to classify the various instruments and
sound events better. Therefore, a subjective study will be
carried out to get a baseline for the expected performance
of the audio model for the Kinetics-Sounds classification
task. This study will have participants relabel some of
the data set based on only listening to the audio and then
again but with only the video. A similar subjective study
will be carried out on the AudioSet data set as it was
noted in Section 3.1 that there is a possibility of modality
bias in the data set. The experiments described in this
paper will also be extended to train the AudioSet tasks
using the late fusion model and the Kinetics-Sounds task
using knowledge distillation. Further investigating the
distributions of relevant information per modality could
provide insight into how to best exploit these distribu-
tions during the training stage of multimodal models.
The experimental results in this paper highlight the im-
pact of imbalanced modality information and the need
for methods to address it.
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