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Abstract. Recommender systems in academia are not widely available. This may 

be in-part due to the difficulty and cost of developing and maintaining recom-

mender systems. Many operators of academic products such as digital libraries 

and reference managers avoid this effort, although a recommender system could 

provide significant benefits to their users. In this paper, we introduce Mr. DLib’s 

“Recommendations as-a-Service” (RaaS) API that allows operators of academic 

products to easily integrate a scholarly recommender system into their products. 

Mr. DLib generates recommendations for research articles but in the future, rec-

ommendations may include call for papers, grants, etc. Operators of academic 

products can request recommendations from Mr. DLib and display these recom-

mendations to their users. Mr. DLib can be integrated in just a few hours or days; 

creating an equivalent recommender system from scratch would require several 

months for an academic operator. Mr. DLib has been used by GESIS´ Sowiport 

and by the reference manager JabRef. Mr. DLib is open source and its goal is to 

facilitate the application of, and research on, scholarly recommender systems. In 

this paper, we present the motivation for Mr. DLib, the architecture and details 

about the effectiveness. Mr. DLib has delivered 94m recommendations over a 

span of two years with an average click-through rate of 0.12%. 

Keywords: recommender systems, recommendations as a service, web ser-

vices, academic recommender systems, digital libraries. 

1 Introduction 

Scholarly recommender systems automate information filtering in academia. They can 

therefore help to decrease information overload in academia. We define a ‘scholarly 

recommender system’ as a software system that identifies a scholar’s information need 

and recommends entities that satisfy that information need. Recommendable entities 

include research-articles, citations, call for papers, journals, reviewers, potential collab-

orators, genes and proteins, and research projects.  

The full potential of recommender systems in academia is not yet developed because 

not every scientist uses or has access to a scholarly recommender system. Only a few 
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reference managers such as Mendeley [1], Docear [2], and ReadCube1 have integrated 

recommender systems, as have some scholarly search engines and digital libraries such 

as Google Scholar [3] and PubMed [4]. However, many services in academia (reference 

managers etc.) do not yet offer recommender systems. Consequently, users of such ser-

vices still face the problem of information overload. We assume that most academic 

operators do not have the resources or skills to develop and maintain a recommender 

system. 

 We introduced “Mr. DLib”, a scholarly recommender-system as-a-service, previ-

ously [5], [6]. Mr. DLib was originally developed as a Machine-readable Digital Li-

brary at the University of California, Berkeley, and introduced in 2011 at the Joint 

Conference of Digital Libraries [6]. The original goal of Mr. DLib was to provide ac-

cess to scholarly literature in a machine-readable format. However, we decided to focus 

the future development more on related-article recommendations as-a-service (RaaS) 

[5]. The RaaS enables operators of, for example, reference managers or digital libraries 

to easily integrate a recommender system into their existing product. The operators do 

not need to develop and maintain a recommender system themselves. Fig. 1 illustrates 

this process. (1) A partner of Mr. DLib – in this case the academic search engine 

GESIS’ Sowiport – requests a list of related articles for an input document that is cur-

rently browsed by a user on Sowiport’s search engine. (2) Mr. DLib generates a list of 

related articles and returns the article’s metadata in XML format. (3) The partner dis-

plays the related articles on its own website.  

 

 
Fig. 1. Illustration of Mr. DLib's 

recommendation process 

 
Fig. 2. Mr. DLib’s Stakeholders 

and general System Overview 

 

 

By offering scholarly recommendations as-a-service, Mr. DLib helps to reduce infor-

mation overload in academia in two ways: 

1. Mr. DLib enables operators of academic services to easily integrate recommender 

systems within their products. A partner can integrate Mr. DLib within a few hours, 

whereas it would take several months to develop their own equivalent recommender 

system. Expert knowledge of recommender systems is not required to integrate Mr. 
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DLib. This way, more operators of academic services can offer recommender sys-

tems to their users. 

2. Mr. DLib is open to recommender system researchers [7]. They can, for example, 

test their recommendation algorithms through Mr. DLib. Mr. DLib also publishes its 

data [8], [9]. Hence, Mr. DLib supports the community to develop more effective 

scientific recommender systems in general.  

In this paper, we present Mr. DLib and its architecture in detail, compared to the previ-

ous publication, which was only a 2-page poster [5]. Presenting Mr. DLib and its archi-

tecture in detail will help researchers to better understand how and why we conduct our 

research about related-article recommender systems; explain how the system works to 

organizations that are interested in using Mr. DLib; and help organizations who want 

to build their own recommender system. 

2 System Overview & Stakeholders 

Mr. DLib has five stakeholders and the following general functionality (Fig. 2)2: 

1. Content Partners submit content that is recommended by Mr. DLib’s recommender 

system. For instance, publishers may submit their publications, academic social net-

works their user profiles, and conference organizers their call for papers.  

2. Service Partners receive recommendations from Mr. DLib to display to their users. 

The recommendations are generated on the servers of Mr. DLib. The service partner 

requests recommendations for a specific user via HTTP request through a Restful 

API. Mr. DLib then returns a machine-readable XML file that contains a list of rec-

ommendations that the partner processes and displays to users. Alternatively, we 

also provide a JavaScript client which partners can add to their website. This client 

automatically requests and displays recommendations. 

3. Users receive recommendations through service partners’ products.  

4. Research partners may analyze the data of Mr. DLib. They may also use Mr. DLib 

as a ‘living lab’, allowing them to evaluate their novel recommendation approaches 

through Mr. DLib. Their recommendation approaches are used to generate recom-

mendations for our service partners’ users.  

5. The operators of Mr. DLib – i.e. us. We build and maintain Mr. DLib. We also act 

as research partners; our main motivation is to conduct research in the field of schol-

arly recommender systems.  

The partners’ content is stored in collections, of which there are three types: 

1. Public collections contain content that may be recommended to any service partner. 

Currently, Mr. DLib has one public collection from the CORE project [10–12]. This 
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collection contains around 20 million documents3 from three thousand research pa-

per repositories4.  

2. Private collections are for content that is supposed to be recommended only to se-

lected service partners. For instance, a university library might have little interest in 

distributing, or no rights to distribute, their content via third parties. With a private 

collection, only this library’s users would receive recommendations for this content. 

Currently, Mr. DLib has one private collection, from the service and content partner 

Sowiport. 

3. User collections store data of the partners’ users. For instance, a reference manager 

might store its user data in such a collection to enable Mr. DLib calculating user-

specific recommendations. Currently, Mr. DLib has not yet any partner that submits 

such data. 

3 Pilot Partners  

3.1 GESIS’ Sowiport 

GESIS – Leibniz-Institute for the Social Sciences is the largest infrastructure institution 

for the Social Sciences in Germany. It is operating the portal Sowiport that pools and 

links social-science information from domestic and international providers, making it 

available in one place [13]. Sowiport currently contains 9.5 million references on pub-

lications and research projects. The documents in Sowiport comprise bibliographic 

metadata (such as authors, publishers, keywords), citation and reference information 

and roughly 1.3 million full text links. For each of the 9.5 million articles in Sowiport, 

a detail page exists. On each of these pages, recommendations are displayed from Mr. 

DLib (Fig. 3).  

 

 

Fig. 3. Mr. DLib’s “related articles” recom-

mendations on GESIS’ Sowiport        
 

Fig. 4. Mr. DLib’s “related articles” recom-

mendations in JabRef 
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3.2 JabRef 

JabRef is one of the most popular reference managers with millions of downloads over 

the past decade and tens of thousands active users5. The main interface of JabRef con-

sists of a list with all articles a user intends to reference. A double click on an entry 

opens the editor window. In this editor window, users may select a “Related Articles” 

tab (Fig. 4). When this tab is selected, JabRef sends a request to Mr. DLib containing 

the document’s title. If Mr. DLib has the input document in its database, Mr. DLib 

returns a list of related articles. If the document is not in Mr. DLib’s database, the rec-

ommender system interprets the title as search query for Lucene and returns Lucene’s 

search results as related articles.  

4 The Architecture in Detail 

A high-level view of Mr. DLib’s architecture is shown in Fig. 7. Here we describe each 

component of this architecture in detail.  

Mr. DLib runs on two servers: one development system and one production system. 

Both are dedicated servers with almost identical specifications. They both have an Intel 

Core i7-4790K, 32 GB RAM, and 1TB SSD. The development system – on which re-

source-intensive tasks are performed such as parsing XML files and calculating docu-

ment embeddings – has an added 2TB SATA. 

Parsing all XML files of GESIS (60GB in size, containing 10 million documents) 

storing the relevant information in the database, and indexing the data in Lucene re-

quires several weeks. 

The Production system’s specification allows Mr. DLib to be responsive to requests. 

65% of recommendation requests are received, processed and responded to in less than 

150ms, and 84% in less than 250ms (Fig. 5). 

 

 

Fig. 5. The number of recommendations delivered, organized by their processing time (millisec-

onds). 84% of recommendations are processed within 250ms 

The central element of Mr. DLib is its Master Data storage, namely a MySQL data-

base. This database contains all relevant data including documents’ metadata and sta-

tistics of delivered recommendations.  

Our “Content Acquisition” process downloads partners’ content once a month. Cur-

rently, Mr. DLib has only one partner with a private collection; GESIS provides their 
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corpus of 9.5 million documents as a Solr XML export. The XML files are backed up 

on Mr. DLib’s server and then the relevant metadata of the documents is stored in the 

database. Although, GESIS provides full-texts for some documents, Mr. DLib currently 

does not utilize it for recommendations due to storage and CPU constraints. In future 

we will use full-texts of documents for calculating recommendations, and for in-text 

citation analysis to calculate document similarities based on metrics such as Citation 

Proximity Analysis. 

The CORE project’s public collection increases in size frequently, and we periodi-

cally update our storage of its metadata. 

Mr. DLib uses several recommendation frameworks to generate recommendations. 

We primarily use Apache Solr/Lucene for its fast search-response times, and for its 

“More like this” class. This class calculates content-based document similarities using 

TF-IDF. It also offers a configurable query parser. As well as Apache Lucene, we also 

use Gensim6 to generate document embedding-based recommendations. We plan to in-

troduce more recommendation frameworks, namely Apache Mahout and LensKit. 

Every recommendation framework we use can retrieve required data from the Master 

Data storage. 

Mr. DLib harnesses different recommendation approaches. As well as TF-IDF and 

document-embeddings, we also generate keyphrases for all articles in the corpus and 

make recommendations based on them. We further utilise stereotype, and most-popular 

recommendation algorithms. Our stereotype approach assumes the persona of a typical 

academic user and recommends documents suitable for that persona. Our most-popular 

approach recommends the most-popular documents from Sowiport. "Popularity" is 

measured by "Views", i.e. the most viewed articles on Sowiport's website, and by "Ex-

ports", i.e. the most exported documents on Sowiport's website. 

Our TF-IDF, document-embedding, and key-phrase-based recommenders can use 

documents’ titles and abstracts to find related documents for a given input document. 

Mr. DLib also uses external recommendation APIs such as the CORE Recommen-

dation API [14], [15] to make recommendations [7]. 

 

 
Fig. 6. XML response containing a list of related documents 
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Fig. 7. Mr. DLib’s architecture 
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Mr. DLib offers a RESTful API. A partner interacts with Mr. DLib via HTTP requests 

(typically GET requests). To retrieve recommendations, the partner calls https://api.mr-

dlib.org/v1/documents/<partner-document_id>/related_documents/ and retrieves an 

XML response containing a list of related documents (Fig. 6). Mr. DLib’s web service 

is realized with Apache Tomcat and JAVA Jersey. The proprietary “API Manager” 

writes some statistics to the database and forward the requests to the proprietary “Rec-

ommendation Manager”. 

Our “Content Enrichment” process gathers data from external sources to enhance 

the recommendation process. For example, for each document we request readership 

statistics from Mendeley’s API [16]7. We can then optionally use readership statistics 

to re-rank recommendations based on the document’s attributes on Mendeley. We fur-

ther use Apache Tika’s language detector to corroborate any language metadata in the 

corpuses. 

The “Recommendation Manager” (JAVA) handles all processes related to recom-

mendations. It looks up required data from the database (e.g. matches the partner’s doc-

ument id from the URL with Mr. DLib’s internal document ID), decides which recom-

mendation framework to use, which recommendation approach to use, calculates and 

stores statistics, and re-ranks recommendation candidates based on scientometrics or 

based on our experimental requirements. 

Parameterization of all algorithms is managed by Mr. DLib’s A/B testing engine. To 

take one example of a recommendation instance: The A/B engine may choose Apache 

Lucene and content-based filtering as a recommendation approach. It randomly selects 

whether to use ‘normal keywords’ or ‘key-phrases’ [17]. For each option, additional 

parameters are randomly chosen; e.g., when key-phrases are chosen, the engine ran-

domly selects whether to use key-phrases from the ‘title’ or ‘abstract’. Subsequently, 

the system randomly selects whether unigram, bigram, or trigram key-phrases are used. 

The system randomly selects how many key-phrases to use when calculating document 

relatedness. The A/B engine also randomly chooses which query parser to use (stand-

ardQP or edismaxQP). Finally, the engine selects whether to re-rank recommendations 

with readership data from Mendeley, and how many recommendations to return. All of 

these details are logged by Mr. DLib. 

We want to ensure that we deliver good recommendations. Therefore, our A/B en-

gine makes its ‘random’ choices with unequal probabilities. We do not want to deliver 

recommendations using an experimental algorithm with the same probability as our 

most effective algorithm, for example. Our probabilities are in-part defined according 

to our previous evaluations [18]. Approximately 90% of recommendations are deliv-

ered using our strongest algorithms, and 10% is allocated to various experimental algo-

rithms and baselines. 

In order to support the recommender system community, we periodically publish 

Mr. DLib recommendation log data. We have published two iterations of the Related-

Article Recommendation Dataset (RARD)8. We released RARD I, which comprised 
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57.4 million recommendations, in 2017 [8]. We subsequently released RARD II in 2018 

[9]; this iteration contains 64% more recommendations than RARD I, as well as 187% 

more features, 50% more clicks, and 140% more documents. The RARD datasets are 

unique in the scale and variety of recommender system meta-data that they provide. 

They allow researchers to benchmark their recommendation techniques, and to evaluate 

new approaches. 

Mr. DLib is mostly developed in JAVA and uses standard tools and libraries when-

ever possible. 

Mr. DLib’s source code is published open source on GitHub under GPL2+ and 

Apache 2 license9. There is a public WIKI and volunteers are welcome to join the de-

velopment. In the future, some code may be kept private or published under different 

licenses if data privacy or copyright of a partner requires this. This could be the case if, 

for instance, a crawler for a partner’s data would reveal information about the partner, 

or their data, that the partner does not want to be public. Similarly, user specific data 

and partner content is not publicly available to ensure data privacy of users and copy-

rights of content partners. 

The uptime of our development and production systems is monitored constantly us-

ing a third-party service10. We have had no significant outages since Mr. DLib’s incep-

tion and work to maintain 100% uptime for our partner-facing production system. 

 

Fig. 8. The number of recommendations delivered, and click-through rates, for our two partners 

between September 2016 and September 2018  

5 Usage Statistics 

Between September 2016 and September 2018, Mr. DLib has delivered 94m recom-

mendations to partners. Users clicked upon recommendations 113,954 times. This gives 

an overall-average click-through rate (CTR)11 of 0.12%. Fig. 8 illustrates usage and user 

engagement for Sowiport and Jabref within this time period. 

                                                           
9 https://github.com/BeelGroup  
10 https://uptimerobot.com/ 
11 We use click-through rate as a metric to gauge recommender effectiveness. This is the ratio of 

recommendations clicked, to recommendations delivered. 
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Our highest priority is to provide the best recommendations possible for our partners 

and for end-users, and to increase recommendation effectiveness. To this end, we have 

conducted many experiments which aim to examine recommendation effectiveness or 

to improve it. These experiments include: increasing recommendation-ranking accu-

racy based on Mendeley Readership data [16]; assessing the effect of position bias on 

user engagement [19]; assessing choice overload with respect to recommendation-set 

size [20]; evaluating stereotype and most-popular recommendation algorithms [18]; co-

ordinating with research-partners to evaluate their own recommender system using Mr. 

DLib as a living-lab [7].  

We keep extensive records of recommendation effectiveness by partner, algorithm, 

week, month, and so on. Fig. 9 illustrates the overall effectiveness of our key classes of 

algorithm per month, between September 2016 and September 2018. 

 
Fig. 9. Performances of our key classes of recommendation algorithm for each month between 

September 2016 and September 2018 

6 Related Work 

In Academia, RaaS for related research articles are offered by a few organizations. 

BibTip12 [21], [22] and ExLibris bX13 offer literature recommendations for digital li-

braries and both apply the same recommendation concept, namely co-occurrence-based 

recommendations [23]. BibTip and bX are for-profit companies that do not publish their 

recommender systems’ source code, nor publish research results of their systems. In 

addition, both BibTip and bX only address digital libraries but no other academic ser-

vice operators such as reference managers. A service similar to Mr. DLib was TheAd-

visor [24], a citation recommender system that offered an API. However, the website 

has been defunct for several years14. The two most similar works to Mr. DLib are Ba-

bel15 [25] and the CORE recommender16 [11], [15]. Babel is developed by researchers 

at DataLab, which is part of the Information School at the University of Washington. 

CORE is mostly developed by the Knowledge Media institute at The Open University. 

Both Babel and CORE are similar to Mr. DLib in many aspects: the motivation for the 

                                                           
12 http://www.bibtip.com/en 
13 http://www.exlibrisgroup.com/category/bXRecommender 
14 http://theadvisor.osu.edu/ 
15 http://babel.eigenfactor.org/ 
16 https://core.ac.uk/ 



 

 

service, the architecture, the philosophy (open source), and the audience are similar to 

Mr. DLib. However, as far as we know neither of these services, for instance, has a 

living lab or publishes their data.  

7 Summary and Future Work 

Many further developments are planned for Mr. DLib: 

─ Currently, Mr. DLib is recommending only research articles. In the future, Mr. DLib 

will also recommend other entities such as conference call for papers, journals, da-

tasets, persons (experts, and potential collaborators), projects, and maybe also Wik-

ipedia pages, academic news, blogs, presentations, and mathematical formulas.  

─ We want to have several distribution partners in each of the following categories: 

digital libraries, publishers, search engines, and reference managers. This will allow 

us to evaluate the effectiveness of recommendation approaches in diverse scenarios. 

─ Currently, Mr. DLib applies several content-based-filtering algorithms (terms, 

keyphrases, document embeddings, stereotype, most popular). In the future, we want 

to introduce collaborative filtering approaches. We further plan to introduce meta-

learning-based approaches for algorithm selection [26], and ensemble-based ap-

proaches for algorithm weighting, to maximize recommendation effectiveness.  

In addition, organizational improvements will be made. The website http://mr-dlib.org  

will be extended, to make it easier for external developers to contribute to the project, 

and more information for potential content and distribution partners must be provided. 

In the long-run some administration interface for the partners might be desirable.  
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