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ABSTRACT 

Received total wideband power (RTWP) data is a measurement of 

the wanted and unwanted power levels received by a 3G radio base 

station (RBS) and is a concise indicator of uplink network 

performance. Using a statistical physics approach, we aim to detect 

periods of unusual activity between cells by assessing a sample of 

RTWP measurement data from a live network. Using wavelet 

correlation and cross-correlation techniques we analyse 

multivariate non-stationary time series for statistical relationships 

at different time scales. We analyse the seasonal component of the 

dataset as well as examining the autocorrelation and partial 

autocorrelation methods. We then explore the Hurst exponent of 

the dataset and inspect the intraday correlations for patterns of 

events. Next, we examine the eigenvalue spectrum using different 

sized sliding windows. Finally, we compare approaches for 

assessing multiscale relationships among several variables using 

the wavelet multiple correlation and wavelet zero-lag cross-

correlation on non-stationary RTWP time series data. 
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1 Passive Intermodulation occurs when two signals mix in a non-linear 

device such as a mechanical connector and generate a third frequency which 
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1. Introduction 

Wavelet techniques have been used extensively in a broad range 

of research areas e.g. engineering [1], medicine [2], fractals [3] and 

geophysics [4]. Robertson et al in [1], first used wavelets for power 

engineering to analyse electromagnetic transients from power 

system faults and switching. Since then there has been a significant 

increase in the application of wavelet transforms to power systems 

including power system protection, power quality and load 

forecasting. Biomedical engineering research has also used wavelet 

transforms, specifically in seizure prevention techniques and pre-

surgical evaluations [2]. Identifying correlations between non-

stationary signals is a common approach particularly in finance in 

measuring the relationship between two or more signals over time. 

In portfolio management, the maximum overlap discrete wavelet 

transform (MODWT) is used as part of an investment portfolio 

optimisation process [5]. The zero-lag cross-correlation matrix and 

the MODWT have also been used to analyse SenseCam images [6] 

to strengthen the wearers memory. 

The typical observation of recorded RTWP levels in a 3G 

network is that levels vary during the day [7], with levels close to 

the noise floor in low traffic periods and levels rising during busy 

periods. Generally, noise levels for a cell in a network exhibit 

seasonality or periodic fluctuations every 24-hour cycle. 3G 

networks are noise limited systems, therefore increases to RTWP 

above normal operating levels could mean a loss of coverage for 

users at cell edge radio conditions and with an undesirable impact 

on network capacity. 

When elevated RTWP levels are observed in a network, several 

factors can be responsible. Firstly, passive intermodulation 

(PIM)1within faulty hardware can result in intermodulation 

products in a cellular operator’s uplink (UL) band; another possible 

cause is external interference; this can appear as spurious emissions 

from another party’s transmitter; thirdly RTWP rises with user 

falls within the operators own band resulting in interference. 
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traffic; large volumes of high-speed packet access (HSPA) traffic 

correlate with increased RTWP levels. Correlations and wavelet 

techniques have been used frequently in wired communication 

systems [8], [9], [10], [11] and have a rich history. In 3G networks, 

orthogonal spreading codes are combined with users’ data packets 

to spread the data across the full 5MHz channel. At the radio base 

station receiver, the same spreading code sequence can extract the 

original data using signal correlation. In Fig. 1 below, a user’s data 

is encoded using an orthogonal spreading code, only the intended 

recipient knows the code. This use of orthogonal codes allows 

concurrent use of the RF physical channel by multiple users. 

 

Figure 1: How direct sequence spreading codes works. As 

each user is given a unique spreading code, each user’s uplink 

signal looks like noise to one another due to the orthogonality 

of the codes used. 

Using wavelets, RTWP data are decomposed into their 

component scales in short time windows, enabling us to study the 

correlation at various scales. This gives us a more convenient way 

to establish overall multiple relationships between cells and to 

minimise the time to fault find such issues. Using such techniques, 

it would allow a network optimisation engineer to quickly evaluate 

whether the interference patterns seen in the RTWP reports are 

correlated with the noise profiles of other cells. This approach 

would also improve the turnaround time for fault detection as a 

large number of cells can be quantitively analysed together rather 

than a traditional approach of assessing each neighbouring cell 

individually. This paper is organised as follows: In Section 2 we 

review the methods used, Section 3 describes the RTWP dataset, 

meanwhile Section 4 details the results obtained and finally in 

Section 5 conclusions are provided. 

2. Methods 

While telecom networks have a rich store of data ready for 

interpretation, little research into RTWP datasets has taken place 

[12]. In this section we introduce some aspects of the datasets using 

typical time series analysis techniques. We calculate the zero-lag 

cross-correlation matrices of the multivariate raw time series data 

to characterise dynamical changes. From this we look at the 

eigenspectrum for noise level patterns at different time scales. 

Finally, we measure the overall relationships at different scales 

among observations in a multivariate random variable with 

multiple wavelet correlation/cross-correlation approaches. 

2.1 Correlation Dynamics 

Using the zero-lag cross-correlation matrix (henceforth 

correlation matrix), dynamical changes in non-stationary 

multivariate time series can be characterised. To analyse the impact 

of abnormal noise rises in 3G networks, a cell with a known 

external interference source was included as per the analysis. To 

see how this source impacts on geographically neighboured cells 

and if any lead or lag pattern exists between such cells, we used a 

correlation matrix consisting of 10 geographically clustered cells. 

Of these, one has the source and we analyse its impact on the other 

9. The correlation matrix is calculated using a sliding window of 

size less than the number of cells. Similar windowing techniques 

have been looked at in OLS hedging models [13].  

Given a time-series of RTWP measurements 𝑅𝑖(𝑡), 𝑖 = 1, … , 𝑁, 

the series within each window is normalised using 𝑟𝑖(𝑡) =

[𝑅𝑖(𝑡) − 𝑅𝑖(𝑡)̂]/𝜎𝑖 where 𝜎𝑖 is the standard deviation of 𝑅𝑖 and 〈… 〉 

denotes a time average over the period and is given by 𝜎𝑖 =

 √〈𝑅𝑖
2〉 − 〈𝑅𝑖〉2. The correlation matrix may be expressed in terms 

of 𝑟𝑖(𝑡) as follows: 𝐶𝑖𝑗 = 〈𝑟𝑖(𝑡)𝑟𝑗(𝑡)〉. 𝐶𝑖𝑗 has values −1 ≤ 𝐶𝑖𝑗 ≤

1, where 𝐶𝑖𝑗 = 1 corresponds to perfect correlation, 𝐶𝑖𝑗 = −1 to 

perfect anti-correlation, and 𝐶𝑖𝑗 = 0, to uncorrelated pairs of cells. 

The correlation matrix can be expressed as 𝐶 = [𝑅𝑅𝑇]/𝑇 where 𝑇 

is the transpose of a matrix and 𝑅 is an 𝑁 × 𝑇 matrix with elements 

𝑟𝑖𝑡 [14].  

The eigenvalues 𝜆𝑖 and eigenvectors 𝑣𝑖 of 𝐶 come from the 

characteristic equation 𝐶𝑣𝑖 = 𝜆𝑖𝑣𝑖. The eigenvalues of 𝐶 are 

ordered by size, such that 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑁. Given that the sum 

of the matrix diagonal entries (the Trace, 𝑇𝑟)) remains constant 

under linear transformation [15], ∑𝑖 𝜆𝑖 = 𝑇𝑟 for 𝐶. Hence, if 

some eigenvalues increase then others must decrease, and vice 

versa, (Eigenvalue Repulsion) [16]. 

Two limiting cases [15],[17] exist for the distribution of the 

eigenvalues: (i) perfect correlation, 𝐶𝑖 ≈  1, when the largest is 

maximised with value 𝑁, (all others being zero). (ii) when each 

time series compromises random numbers with average 

correlation𝐶𝑖 ≈  0 and the corresponding eigenvalues are 

distributed around 1, (where any deviation is due to spurious 

random correlations). For 𝐶𝑖 between 0 and 1, the eigenvalues 

furthest away from 𝜆𝑚𝑎𝑥 can be much smaller. To investigate the 

dynamical changes in eigenvalue distribution we use sliding 

windows with eigenvalues normalised thus �̃�𝑖(𝑡) = [𝜆𝑖 − 𝜆]/

𝜎𝜆 where 𝜆, 𝜎𝜆 are mean, standard deviation of the eigenvalues from 

a subsection of the eigenspectrum of 𝐶. By normalising the 

eigenvalues, we can compare eigenvalues at both ends of the 

spectrum, though their magnitudes differ. To calculate 𝜆  and 𝜎𝜆 

above a low volatility part of the eigenspectrum is used to enhance 

the visibility of high periods (also the full time period can be used) 

[5]. 

2.1.1 Maximum Overlap Discrete Wavelet Transform. 



 

  

 

 

The Maximum Overlap Discrete Wavelet Transform, 

(MODWT) [19], transforms a series into coefficients related to the 

variations over a set of scales. Like the DWT, the MODWT outputs 

a set of time-dependent wavelet and scaling coefficients with basis 

vectors associated with a location 𝑡 and a unitless scale 𝜏𝑗 = 2𝑗−1 

for each decomposition level 𝑗 = 1, … , 𝐽0 [14]. However, unlike the 

DWT, the MODWT, has a high level of redundancy. The 

advantages of the MODWT over DWT are its non-orthogonality 

and ability to handle any sample size 𝑁 ≠ 2𝑗 [14]. With MODWT, 

a signal can be broken into 𝐽 levels by applying 𝐽 pairs of filters. 

The coefficients at the 𝐽𝑡ℎ level are found by applying a rescaled 

father wavelet: 

�̃�𝑗,𝑡 = ∑
𝐿𝑗−1

𝑙=0 �̃�𝑗,𝑙𝑓𝑡−𝑙 (1) 

for all t = …, -1, 0, 1,…, where f is the function to be decomposed 

[14]. The rescaled mother, �̃�𝑗,𝑡 =
𝜑𝑗,𝑡

2𝑗
 , and father, �̃�𝑗,𝑡 =

𝜑𝑗,𝑡

2𝑗
, 

wavelets for the 𝑗𝑡ℎ level are a set of scale-dependent localised 

differencing and averaging operators and can be seen as rescaled 

versions of the originals. The 𝑗𝑡ℎ level equivalent filter coefficients 

have a width 𝐿𝑗 = (2𝑗 − 1)(𝐿 − 1) + 1, (𝐿 is the width of the 𝑗 =

1 base filter [14]). The filters for levels 𝑗 > 1 are not explicitly 

constructed as the detail and scaling coefficients can be found, 

using an algorithm involving the 𝑗 = 1 filters operating recurrently 

on the 𝑗𝑡ℎ level scaling coefficients, to get the 𝑗 + 1 level scaling 

and detail coefficients [14]. 

2.1.2 Wavelet Variance. 

The wavelet variance 𝜈𝑓
2(𝜏𝑗) is defined as the expected value of 

�̃�𝑗,𝑡
2  considering only non-boundary coefficients2. The unbiased 

estimator of the wavelet variance is achieved by omitting the 

coefficients impacted by boundary conditions and is calculated as 

follows: 

𝜐𝑓
2(𝜏𝑗) =

1

𝑀𝑗

∑𝑁−1
𝑡=𝐿𝑗−1 �̃�𝑗,𝑙

2  (2) 

where 𝑀𝑗 = 𝑁 − 𝐿𝑗 + 1 is number of non-boundary coefficients at 

𝑗𝑡ℎ level [14]. The series behaviour over different horizons on a 

scale-by-scale basis is shown by the wavelet variance. 

2.1.3 Wavelet Covariance and Correlation 

Like the wavelet variance above, the wavelet covariance 

between functions 𝑓(𝑡), 𝑔(𝑡) is defined as the covariance of 

wavelet coefficients at scale 𝑗. The unbiased estimator of the 

wavelet covariance at the 𝑗𝑡ℎ scale is: 

𝜈𝑓𝑔(𝜏𝑗) =
1

𝑀𝑗

∑𝑁−1
𝑡=𝐿𝑗−1 �̃�𝑗,𝑙

𝑓(𝑡)
�̃�𝑗,𝑙

𝑔(𝑡)
 (3) 

Again, all wavelet coefficients affected by the boundary are 

removed [14], and 𝑀𝑗 = 𝑁 − 𝐿𝑗 + 1. The MODWT estimate of the 

wavelet correlation between functions 𝑓(𝑡) and 𝑔(𝑡) is found with 

the wavelet covariance and square root of the wavelet variance of 

                                                                 
2 The MODWT treats the time series as if they are periodic using “circular 

boundary conditions”. There are Lj wavelet and scaling coefficients that are 

the functions at each scale 𝑗 [14]. The MODWT estimator, of the 

wavelet correlation is given by: 

𝜌𝑓𝑔(𝜏𝑗) =
𝜐𝑓𝑔(𝜏𝑗)

𝜈𝑓(𝜏𝑗)𝜈𝑔(𝜏𝑗)
 (4) 

where, at scale 𝑗, 𝜐𝑓𝑔(𝜏𝑗) is the covariance between 𝑓(𝑡) and 

𝑔(𝑡), 𝜐𝑓(𝜏𝑗) is the variance of 𝑓(𝑡) and 𝜐𝑔(𝜏𝑗) is the variance of 

𝑔(𝑡) [14]. 

2.1.4 Wavelet Multiple Correlation and Cross-Correlation 

The wavelet multiple correlation and cross-correlation give the 

overall statistical relationship at different time scales among a set 

of multivariate random data. The wavelet multiple correlations 

(WMC) 𝜑𝑋(𝜆𝑗) are defined as one single set of multiscale 

correlations calculated from 𝑋𝑡 where 𝑋𝑡 = (𝑥1𝑡, 𝑥2𝑡 … , 𝑥𝑛𝑡) is a 

multivariate stochastic process and 𝑊𝑗𝑡  = 𝑤1𝑗𝑡 , 𝑤2𝑗𝑡 , … , 𝑤𝑛𝑗𝑡 the 

respective scale 𝜆𝑗  wavelet coefficients from application of the 

maximum overlap discrete wavelet transform to each 𝑥𝑖𝑡  process 

[20]. The wavelet multiple correlation is: 

𝜑𝑋(𝜆𝑗) = 𝐶𝑜𝑟𝑟(𝑤𝑖𝑗𝑡 , �̂�𝑖𝑗𝑡) =
𝐶𝑜𝑣(𝑤𝑖𝑗𝑡,�̂�𝑖𝑗𝑡)

√𝑉𝑎𝑟(𝑤𝑖𝑗𝑡)𝑉𝑎𝑟(�̂�𝑖𝑗𝑡)

, (5) 

where 𝑤𝑖𝑗 is chosen to maximise 𝜑𝑋(𝜆𝑗) and �̂�𝑖𝑗 are the fitted 

values in the regression of 𝑤𝑖𝑗 on the rest of the wavelet coefficients 

as scale 𝜆𝑗 . 

Allowing for a lag of 𝜏 between observed and fitted values of 

the variable selected [20] as the criterion variable at each scale 

𝜆𝑗  the wavelet multiple cross-correlation (WMCC) is defined as: 

𝐶𝑜𝑟𝑟(𝑤𝑖𝑗𝑡, �̂�𝑖𝑗𝑡+𝜏) =
𝐶𝑜𝑣(𝑤𝑖𝑗𝑡,�̂�𝑖𝑗𝑡+𝜏)

√𝑉𝑎𝑟(𝑤𝑖𝑗𝑡)𝑉𝑎𝑟(�̂�𝑖𝑗𝑡+𝜏)
 (6) 

3 The Dataset 

The RTWP dataset (RNC20_30 data) has uplink receive level 

values at a radio base station (RBS) taken from a live 3G network. 

The dataset is extracted from the operational support database in 

CSV format and is post-processed in R. The analysis was 

performed offline due to the unavailability of dedicated hardware 

to perform real time analysis. In order to productionise this analysis 

a real time streaming engine would be configured to ingest the 

RTWP reports. From there an R or Python scripts would parse and 

manipulate the data before the wavelet algorithms analyse the data 

for correlations between cells to identify the presence or absence of 

external interference. RTWP data is available at granularities raw 

data (15 min), hourly and daily. The analysis here concentrates on 

a subsample of the RNC20_30 data dataset using the raw format 

for representation purposes. A site with a known external 

interference source was identified and its neighbouring cells 

analysed to see if a lead-lag relationship exists between these 

proximal sites. 

influenced by the extension, which are referred to as the boundary 

coefficients. 



 

  

 

 

 

3.1 Data Visualisation 

In Fig. 2 we see RTWP levels in decibel-milliwatts (dBm) 

plotted against time for site LX0088. Sector is the industry term for 

an antenna on a mast radiating a specific frequency. Typically a site 

has 3 sectors, each covering a unique geographic area so one 

expects different noise profiles based upon area subscriber density 

and mobility.  

 

Figure 2: RTWP levels vs. Time showing the presence of 

external interference particularily on Sec A and C. 

In Fig. 2 above, Sector B (Sec B) shows a typical noise profile 

for a cell operating as normal. As usage decreases after midnight, 

the noise level is close to the noise floor of ≈-105dBm. Network 

activity increases into the day and again decreases at night. Sectors 

A and C show very different profiles to Sector B. Sudden bursts of 

noise such as on Sunday at ≈08:45am appear and vanish once again. 

Early Friday morning there are two very obvious sudden bursts 

of noise in Sectors A and C and to a lesser extent in Sector B. From 

above, the chance of all three sectors exhibiting similar noise 

signatures such as that seen on Friday at 06:45 is very small as they 

cover different geographic areas, this strongly points to the 

presence of local external interference. 

Table 1: Summary statistics for RNC20_30 

Freq. 

Band 

Mean 

(dBm) 

Median 

(dBm) 

S.D 

(dBm) 

Max 

(dBm) 

Min 

(dBm) 

Count 

U900 

F0 

-104.44 -105.10 1.14 -65 -110 1463 

U21 F1 -104.98 -105.35 0.79 -73.63 -110 1527 

U21 F2 -104.84 -105.24 0.87 -73.93 -110 1488 

U21 F3 -105.04 -105.38 0.82 -75.03 -110 1509 

 

Table 1 shows typical values for the 4 different frequencies in 

the network based on a sample of 5987 cells. The table shows that 

the U900MHz cells mean exceeds that of the U2100MHz cells. The 

table below indicates that the mean of the U900MHz cells is higher 

than that of the U2100MHz cells. Since the mean value for all the 

frequency bands is higher than the median, this is indicative of a 

right skewed distribution of values. The maximum values indicate 

the strength of interference sources which average 30dB of noise 

for U2100 and 40dB of noise for the U900 cells. Minimum values 

of -110dBm indicate that some “deaf” cells in the network should 

be investigated for physical build issues. 

  

Figure 3: Boxplot of RTWP values for LX0088 

The box plot in Fig. 3 shows RTWP values for all cells across 

all frequencies belonging to site LX0088. From this representation, 

the range of values for all three U900MHz cells is obviously much 

larger than that of the U2100MHz cells. The median values for 

U900MHz Sector A and C are higher than that of Sec B which is 

also evident on the U2100MHz cell particularly U21A2 and 

U21C2. 

4 Results 

4.1 Time Series Decomposition 

Time series decomposition using Loess [21] splits the RTWP 

data into its four main components, the trend, cyclical, seasonal and 

irregular parts. Fig. 4 in the Appendix shows the seasonal 

decomposition for LX0088U09A3, the cell showing external 

interference as discussed in Fig. 2. Fig. 4 shows from top to bottom 

(a) the original time series, (b) the seasonal, (c) the trend and (d) 

the remainder components.  

 

Figure 4: Seasonal decomposition for LX0099U09A3 

The seasonal component indicates a daily periodicity and the 

vertical red bars on the right-hand side of the image show that the 

seasonal signal is large relative to the data variation. This 

component clearly shows the early morning and afternoon spike in 

noise levels typically associated with waking and lunch time heavy 



 

  

 

 

usage patterns. During the consistently high noise periods during 

day 2 and 3 in the original data, the trend also increases before 

falling with the noise after day 4. 

4.2 Autocorrelation and Partial Autocorrelation 

Analysis 

Other statistical properties of interest for patterns include the 

autocorrelation (ACF) and partial autocorrelation (PACF) 

functions. For a normal network cell, we should see a strong 

internal link between the signals at regular intervals given the 

strong seasonality from above. Before we assess the ACF and 

PACF, differencing was required in order to ensure data 

stationarity. First order differencing was used to stabilise the mean 

and ensured a constant variance around the mean. 

 

Figure 5: (a) Autocorrelation plot for LX0088U09A3, (b) 

autocorrelation for LX0088U21A1 

Fig. 5(a) shows the ACF shut off immediately after lag 0 with a 

few significant negative lags at 2, 3 and 6. The corresponding 

PACF plot in Fig. 6(a) in the Appendix shows a slowly decaying 

negative PACF up to lag 7. These 2 plots, we use to reliably forecast 

future values for LX0088U09A3 an ARIMA(3,1,5) model [22]. 

Similarly, Fig. 5(b) and 6(b) also in the Appendix show a 

comparable behaviour for LX0088U21A1 which covers the same 

geographic area.  

 

Figure 6: (a) Partial autocorrelation plot for LX0088U09A3, 

(b) partial autocorrelation plot for LX0088U21A1 

In Fig. 5(b) in the Appendix we see a sudden shut off in ACF with 

large negative lags for values 1 & 2 while the corresponding PACF 

plot in Fig. 6(b) shows a gradual decrease in the PACF with 

significant lags for values up to 6. Again the process suggests an 

ARIMA(2,1,6) model. In Fig. 5(b) the first lag shows a negative 

autocorrelation at lag 1, implying that if a value is above average 

then subsequent values will be below average. The ACF plot for 

LX0088U09A3, the cell with a verified external interferer shows 

that the first significant value occurs at lag 2 and this is also 

negative. This implies that if an RTWP measurement is above 

average, the value is expected to remain above average until 2 lags 

have occurred which equates to 30 min. Comparing this to the 

equivalent ACF plot for LX0088U21A1, the U900MHz cell will 

remain above average for up to 30 min while the next value for the 

U2100MHz will be below average. 

4.3 Hurst Exponent 

The Hurst exponent is a statistical measure of the long-term 

memory of a time series and describes the rate of decrease of 

autocorrelations with lag. The Hurst quantifies the relative 

tendency of a time series either to regress strongly to the mean or 

to cluster in a certain direction [23]. It varies between 0 and 1: 𝐻 =

0.5 implies a random walk or independent process; 0 ≤ 𝐻 < 0.5 

then the time series is anti-persistent meaning that a time series 

with decreasing trend is more likely to show an increasing trend 

next. If 0.5 < 𝐻 ≤ 1 the process is persistent, (i.e. if we have an 

increasing time series then it is more probable that it will continue 

to show an increasing trend [24]).  

 

Figure 7: Distribution of Hurst exponent estimates for 

RNC20_30 

Fig. 7 in the Appendix section shows the Hurst distribution for 

the RNC20_30 dataset where 0.5 ≤ 𝐻 < 1 indicates long term 

positive autocorrelation such that high noise levels will likely be 

followed by other high values. Further, as the Hurst seems normally 

distributed, we assume that the original data sampled from have 

similar properties. 



 

  

 

 

 

 

Figure 8: RNC20_30 Distribution of (a) Skewness and (b) 

Kurtosis 

The skewness distribution in Fig. 8(a) in the Appendix indicates 

that many of the variables in the RNC20_30 dataset are clearly right 

skewed indicated by the positive values while the kurtosis 

distribution in Fig. 8(b) indicates that most of the variables in the 

same dataset have fat-tailed or leptokurtic distributions. 

4.4 Intraday Correlations 

The intraday correlations show the co-movements of RTWP 

values between days for a small sample of cells and describe the 

intraday volatility for a cell with a known interference source and 

one without. Fig. 9(a) and 9(b) show the intraday correlations for 

both LX0088U21A1 and LX0088U09A3 for a two-week period. 

LX0088U21A1 provides coverage to the same geographic area as 

LX0088U09A3 but uses a different frequency band which is less 

susceptible to uplink interference. The first noticeable observation 

in Fig. 9(a) is the strong positive correlation for cell LX0088U21A1 

for all days with a minimum correlation of 0.4 between Day 7 and 

Day 8 while the strongest correlation occurred between Day 3 and 

Day 4 as well as between Day 11 and Day 3 with values of 0.9. 

 

Figure 9: (a) Intraday correlation for LX0088U09A3 and (b) 

LX0088U21A1 

Fig. 9(b) also details the intraday correlations for cell 

LX0088U09A3 from a verified external interference source. 

LX0088U21A1 and LX0088U09A3 differ greatly: In Fig. 9(a) we 

see contrasting values between days, between Day 10 and Day 7 

the correlation is positive and strong, contrasting with strong 

negative correlations as between Day 7 and Day 3. On average, the 

intraday correlations are typically weak with values between 0.2 

and -0.2.  Fig. 10 also in the Appendix is a plot of RTWP for both 

cells over the 14 days. We see the contrast in RTWP values for both 

cells and the impact an external interference source has on 

LX0088U09A3.  

 

Figure 10: RTWP of LX0088U09A3 and LX0088U21A1 

In Fig. 10, we see that on Day 3 the magnitude of the 

interference levels for LX0088U09A3 is consistently high 

throughout the entire day and rolls over into day 4 which explains 

the strong negative interday correlations between Day 3 and Day 7, 

Day 10, Day 12 and Day 13. Since the interference affected Day 4 

also, we expect to see strong negative correlations for this day also. 

4.5 Eigenvalue Dynamics 

The first eigenvalue (𝜆1) of a correlation matrix shows the 

maximal variance of the variables which can be accounted for with 

a linear model by a single underlying factor [25]. For all positive 

correlations, this first eigenvalue is roughly a linear function of the 

average correlation among the variables [26]. As per Fig. 4 in the 

Appendix, the RTWP data has a seasonality of 24 hours, suggesting 

that the correlation between variables would also exhibit a 

periodicity across the same scale and likewise the eigenvalues of 

the correlation matrix. 

With 10 cells from the RTWP dataset, one having a known 

interference source, we look at the eigenvalue dynamics for unusual 

patterns: Fig. 11 gives the largest eigenvalue for four different 

window sizes: (a) 90 mins, (b) 300 mins, (c) 750 mins and (d) 1500 

mins. Using normalised eigenvalues as described above (1), the 

dynamics of (𝜆𝑚𝑎𝑥) should show the presence of unique events. 

Obviously as the window size increases the high frequency 

information visible in Fig. 11(a) in the Appendix section is lost due 

to the smoothing effect of the larger window size. The changes in 

magnitude of 𝜆1 for the different window sizes indicate substantial 

changes in the noise levels between cells at these time periods. In 

Fig. 11(c) we clearly see 14 distinct double peaks, (some of these 

double peak events are identified by a red asterisks) a sudden rise 

followed by a small decline then a rise and then another drop. Each 

double peak represents a day’s information. These troughs on the 

14 peaks coincide with early afternoon noise levels and seem to 



 

  

 

 

signify low volatility periods as all cells are expected to have peak 

RTWP values at the busy times of day.  

 

Figure 11: Largest Eigenvalue for (a) 90min (b) 300min (c) 

750min (d) 1500min windows 

In Fig. 11(d) in the Appendix we see a smoothly varying 

function with eigenvalue magnitudes varying between 5.0 and 7.0. 

This plot captures the daily noise variations between cells as a 

moving average and therefore any low frequency variations are 

smoothed out. As stated in Section 2.1 above, the sum of all 

eigenvalues must equal 𝑇𝑟(𝐶). 

As 𝐶 is a 10x10 matrix, from Fig. 11(d) we can say that 𝜆1 

explains between 50-70% of the system noise and fluctuations 

between these values, evident between time index 400-700 are due 

to other sources of noise which cause variation in eigenvalue 

magnitudes at these times. 

4.6 Wavelet Multiple Correlation 

This section introduces the wavelet multiple correlation method 

to assess the overall statistical relationship between many variables. 

Macho [20] introduced this approach when studying the wavelet 

multiple correlation and cross-correlations between the Eurozone 

stock markets. The wavelet multiple correlation method produces a 

single statistical measure of the multivariate sample on a scale-by-

scale basis. Using this approach, the wavelet correlation between 

pairs of variables can be assessed in a single visualisation rather 

than having to compare multiple wavelet statistics for all the 

variables under analysis. 

We decomposed the RTWP dataset using the Daubechies least 

asymmetric (LA8) wavelet filter which has a filter of length L=8.  

This filter is used extensively in finance [13] [5] as it provides a 

reliable estimate of correlation between long memory time series 

[27]. Based on the findings in Section 4.3 this was an appropriate 

choice filter given an average 𝐻 value of 0.7. The maximum level 

of decomposition using the LA8 filter is given by 𝑙𝑜𝑔2 (𝑇) where 

𝑇 is the time series length, in our case this is 1344 equating to a 

maximum decomposition level of 10. For this study, we use 𝐽 = 7 

resulting in 7 wavelet coefficients and one scaling coefficient for 

each interval in the RTWP dataset i.e. �̃�𝑖1, … , �̃�𝑖8 and 

�̃�𝑖8 respectively. Since a MODWT approximates an ideal band-

pass filter (with bandpass given by the frequency interval 

[2−(𝑗+1), 2−𝑗]) for 𝐽 = 1, … , 𝐽. Inverting the frequency range, the 

corresponding periods are within (2𝑗 , 2𝑗+1)  time unit intervals 

[27].  

 

Figure 12: Estimate of wavelet multiscale correlation 

Since the RTWP dataset is sampled at 15 min intervals, the 

wavelet coefficients represent the following intervals, 30-60 min, 

1-2 hours, 2-4 hours, 4-8 hours, 8-16 hours, 16-32 hours (daily 

scale) and 32-64 hours (2-day scale). 

Fig. 12 in the Appendix shows the wavelet multiple correlation 

for a sample of 10 cells from the RTWP dataset. It gives the 

strength of the wavelet correlations between the sample of 10 cells 

across the 7 wavelet scales. The straight blue lines represent the 

upper and lower bounds of the 95% confidence intervals. For each 

wavelet level, the variable which maximises the multiple 

correlation against a linear combination of the rest of the variables 

is also plotted. From the wavelet multiple correlation for a sample 

of 10 cells, we see that all the correlations are positive and indicate 

a strong positive relationship. The scale rises with the correlation 

between cells up to perfect cell correlation at the longest scale. It is 

also evident that as the scales increase the confidence interval 

narrows showing increasing certainty of the estimate. Since near 

perfect correlation exists at wavelet scales greater than 16, an exact 

linear relationship between the RTWP values of the 10 cells cannot 

be ruled out. The presence of such a relationship means that noise 

levels for any cell can be estimated by the overall noise levels of 

the other cells in the sample. Another interesting point is the brief 

decrease in correlation between scales 1 and 2 before the 

correlation almost linearly increases to perfect correlation at longer 

scales. This shows that, at smaller time scales, clear discrepancies 

exist between the RTWP levels but that over longer time periods 

the RTWP values follow the same overall trend. 

4.7 Wavelet Multiple Cross-Correlation 

Fig. 13 also in the Appendix shows the wavelet multiple cross-

correlation for different wavelet scales with leads and lags up to 25 

hours. Like the wavelet multiple correlation above, the multiple 

cross-correlation decomposes the usual cross-correlation and 

produces patterns which show the relationship between multiple 

variables across various physical time scales [27]. Each wavelet 

scale plot shows in its upper left-hand corner the network cell 

maximising the multiple correlation against a linear combination of 



 

  

 

 

 

the other variables and, thus, signals a potential leader or follower 

for the whole system [20]. The wavelet multiple cross-correlation 

analysis was performed for several different lead/lag values and for 

brevity Fig. 13 shows the positive and negative lag up to 25 hours. 

 

Figure 13: Wavelet multiple cross-correlation for a sample of 

10 cells at different wavelet scales. The continuous red line 

corresponds to the upper and lower bounds of the 95% 

confidence interval. 

Like Fig. 12 from the Appendix, Fig. 13 also shows consistent 

positive correlations across all lags for all lead/lag values. Upper 

and lower bounds of the 95% confidence interval are shown as 

continuous red lines and again the variable maximising the multiple 

correlation against a linear combination of the rest of the variables 

is shown in the upper left-hand corner for each scale. When both 

confidence intervals are above the horizontal axis on the right-hand 

side of the graph, this indicates a positive statistically significant 

lagging wavelet cross-correlation and inversely, a positive 

confidence interval on the left-hand side of the chart indicates a 

positive statistically significant leading correlation. From the 

results in Fig. 13, we see that for the majority of lag values, the 

cross-correlation between the multivariates is statistically 

insignificant since neither of the confidence intervals are greater 

than zero. Clearly there are brief periods around the zero-lag mark 

across a number of wavelet scales indicating a statistically 

significant cross-correlation. Fig. 13 shows that there are 

statistically significant events in Levels 1, 5 & 6 for lags of 1, 4 and 

4 respectively where levels 1, 5 & 6 represent 30-60 mins, 8-16 

hours and 16-32 hours respectively. In Fig. 13, the Level 1 plot 

identifies the presence of a statistical lag relationship for 

LX0080U09C3 at lag 1 at the 30-60 min time scale. The Level 3 

plot in Fig. 13 indicates that RTWP values for LX0088U09A3 

tends to statistically lag the other cells for time scales of 4-8 hours. 

We see in the Level 3 (2-4 hours) plot statistically significant 

periods for LX0088U09A3 at lag values of -11 and -17 indicating 

possible RTWP levels for LX0088U09A3 leading the other cells in 

the analysis for time scales of 2-4 hours. The Level 6 plot also 

shows a statistically significant lag for LX0088U09A3 at lag values 

of 4 for time scales 16-32 hours. 

4.8 Conclusion 

High RTWP levels have serious consequences in modern 

wireless networks due to their adverse effect on coverage of a 

wireless transceiver site and negative impact on customer 

satisfaction. Quickly classifying the cause and identifying the 

source of the problem is key to resolving issues as efficiently as 

possible while at the same time minimising operational expenditure 

in the fault-finding process. With the explosion in usage of noisy 

packet switched data sessions, monitoring and protecting uplink 

noise levels is key for a wireless operator hence alternative data 

mining techniques are needed.  

By examining the eigenvalue spectrum of the correlation matrix 

for a small sample of cells we looked at dynamical changes in the 

RTWP values using different window sizes which reflect large 

changes in the RTWP values of the sample. Using this approach an 

engineer could quickly identify major changes in RTWP values for 

a group of cells rather than assessing individual graphs of RTWP 

values and quickly quantify the magnitude of the change in noise 

levels for a group of cells rather than assessing the impact at an 

individual cell level. 

The maximum overlap discrete wavelet transform enabled the 

multilevel decomposition of the raw RTWP time series into their 

respective coefficients for different time horizons. This technique 

enables RTWP measurements to be investigated for correlations 

and cross-correlations over several different time horizons. The 

multiscale wavelet correlation showed how it can be used to 

pinpoint short term deviations in RTWP values when assessed over 

numerous scales. Similarly, the multiscale wavelet cross-

correlation identified a number of different lead and lag 

relationships not evident in standard approaches. These lead/lag 

relationships need further investigation to fully understand the 

complex interplay that exists between each network element.  

Future work includes investigating the eigenvalue spectrum of 

the wavelet correlation matrix using a heatmap diagram for 

evidence of significant events across various wavelet scales. In this 

way, an engineer could easily identify periods of high RTWP 

values across different time horizons. To quantify the significance 

and meaning of the elements of the cross-correlation matrix 𝐶, it 

would be advantageous to quantify the correlations between such 

cells by comparing the statistics of the cross-correlation matrix to 

the null hypothesis of a random matrix using RMT as per [28], if 

the properties of 𝐶 conform to those of a random correlation matrix, 

it signifies random correlations in 𝐶. Deviations of the properties 

of 𝐶 from those of the random matrix convey information about 

genuine correlations requiring further investigation. 

Another possible approach to be considered could involve time 

series clustering based on similarity or distance measurements, the 

discrete wavelet transform can be used as a metric of similarity. In 

doing so, time series that are similar are clustered together and may 

assist in identifying cells which exhibit similar patterns of 

interference. These clusters could then be further analysed to 

identify cells which are spatially grouped which may signal the 

presence of an external interference source. 
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