
 

 

  

ABSTRACT 

Gait analysis is the measurement, processing and systematic interpretation of biomechanical parameters that characterize human 

locomotion. It supports the identification of movement limitations and development of rehabilitation procedures. Although Gait 

analysis is performed in several laboratories in many countries, there are many issues such as: (i) the high cost of precise motion 

capture systems; (ii) the scarcity of qualified personnel to operate them; (iii) expertise required to interpret their results; (iv) space 

requirements to install and store these systems; as well as difficulties related to the measurement protocols of each system; (vi) 

limited availability (vii) and the use of markers can be a barrier for some clinical use cases (e.g. patients recovering from 

orthopedics surgeries). In this work, we present a low cost and more accessible system based on the integration of a Multi Kinect 

system and Shimmer inertial sensors to capture human Gait. The novel multimodal system fuses IMU sensors (acceleration, 

gyroscope, and magnetometer) to get quaternion orientation and combines IMU data with 3D points of Multiple Microsoft Kinects 

(which employ RGB-D cameras and skeleton data) and output spatiotemporal Gait variables. A comparison of this system with 

the VICON system (the gold standard in motion capture) was performed. Our marker-less multimodal motion capture system 

combines data from 4 skeletons generating 3D and complete 360 degrees in view skeleton. We compare our system throughout 

gait spatiotemporal variables: Gait cycle time, stride time, Gait length (distance between two strides), stride length, and velocity. 

We also evaluated the system with knee and hip joint angles. Our results have shown high correlation results for spatiotemporal 

variables and joint angles inside the 95% bootstrap prediction when compared with VICON. 
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1. INTRODUCTION 

AIT is a repetitive sequence of movements of lower limbs that moves the body forward, while simultaneously maintaining 

stability of the body[1]. During Gait, one limb acts as a movable support, in contact with the ground, while the contralateral 

limb advances in the air. It is a cyclic movement as limbs invert their roles with each successive step[2]. In general, Gait analysis 

involves the measurement, processing, and systematic interpretation of biomechanical parameters that characterize human 

movement. Through Gait analysis, it is possible to identify limitations in movement and provide information to guide rehabilitation 

and pre-habilitation procedures for orthopedics surgeries.  

Currently, Gait analysis is performed in biomechanical laboratories. The data from three-dimensional kinematic systems can be 

obtained through synchronized infrared and high-speed cameras[3]. It is also possible to capture ground reaction force data via 

force platforms[4]. The combination of joint movement and angles, in addition to spatiotemporal kinematic and individual 

anthropometric characteristics, can be used to describe Gait. All these variables can be assessed through Motion Capture 

technologies[5]. 

Motion Capture (MoCap) is a term used to describe the process of digitalizing motion, transposing it into a digital format using 

camera-based and wearable systems.[6]. There are two main types of MoCap technologies: marker-based motion capture and 

marker-less-based MoCap, defined based on the need (or not) to use landmark markers to detect position. Each type of MoCap 

technology establishes needs and constraints for the environment in which to capture motion, thus defining the process for the 

motion capture and the calibration. Moreover, each technology has its pros and cons in Gait evaluation[7]. 
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The advancement of science and technology, and development of powerful marker-based Motion capture technologies like the 

VICON system[8], now means that precise, clear, and accurate gait assessment is possible[9, 10]. MoCap technologies have been 

used in cinema, game creation, and in health to evaluate performance of athletes or clinical analysis[11]. This technology records 

the actions and movements of actors with reference markers placed on specific locations of the body, followed by post processing 

via software[8]. The participant performs movements in Gait laboratories with cameras that captures the light reflected by markers. 

Movements in such systems are a function of the movement of the reflective markers[12]. Some drawbacks include high cost, 

complex set up and the occlusion of markers during the movements. In case of occlusions, further processing to fill the gaps is 

required.  

Some MoCap technologies do not require the use of reflective markers. Such techniques are less restrictive, thus giving the 

impression of greater freedom of movement to the user and can overcome the problem of occlusion. However, complexity lies in 

the precise representation of the movement when compared with marker-based capture[6]. The operation of the marker-less MoCap 

is based on the analysis of the silhouette of the image of the actor who is performing the movement in contrast to the background 

of the image. The marker-less MoCap technique has been widely used in devices that efficiently perform the task of translating 

human motion into a 3D coordinate point that can be mapped by the computer[13]. 

Multimodal systems are structures that can support communication (both inputs and outputs) via several modalities[14]. The 

multimodal framework can include gesture, position, speech as well as audiovisual, 3D and inertial information[14]. These systems 

can analyse the motion response of the participant as output using different sensors as input variables. Nowadays, multimodal 

systems are broadly used, and a theme that frequently emerges is the difficulty for integration and synchronization requirements 

to combine different modules in an entire system (we developed a synchronization protocol that overcome this barrier). The 

modular architecture in a multimodal system is regularly used because it can easily integrate (update) new requirements as 

technology advances over time[15]. The multimodal architecture can be applied in Gait analysis using several Motion Capture 

devices as input, and spatiotemporal Gait variables as output.  

Although Gait laboratories have become more precise with the development of accurate motion capture devices like VICON 

system, the cost of equipment is inhibitive for wide scale adoption[16]. A multimodal Gait analysis system that can provide valid 

data and feedback using inexpensive motion capture devices like the Microsoft Kinect and inertial sensors would be a welcome 

alternative to these expensive systems for Gait laboratories. 

The aims of this study include, as main contribution the application of a Multimodal System in Gait analysis to extract Gait 

features by combination of inertial and 360o.skeletons It contains the accuracy compared with the gold standard VICON system, 

synchronization modules, and real-time streaming protocol and fusion of accelerometer, gyroscope, and magnetometer data for 

quaternion representation in R4.   

2. RELATED WORK 

First, we review some related Motion Capture works including marker-less systems, inertial based systems, and combined 

multimodal systems. 

2.1 Marker-less technologies 

Marker-less MoCap technologies have being used in Gait analysis, to detect Gait events and also in rehabilitation. Some marker-

less technologies apply RGB cameras in Gait. In[17], a 2D markerless Gait analysis was proposed using a single depth camera. 

Their system had an upright calibration protocol and tracks pelvis and feet segments. They compared their results with a marker-

based technology with correlation between 0.82 and 0.99. Their system contained spatiotemporal variables and stride time error 

less than 0.02s.  

The authors in [18] have proposed a Gait analysis system composed by only a single RGB camera. The methodology applied 

generates a silhouette using particles filtering from a synthetic image. The authors reported that the sample rate was quite low 

(20hz) and as a result, they could not get angle changes of more than 5o between two frames. They reported results for longitudinal 

displacement of the knee and ankle. Their comparison with the system with VICON system was presented via graphical differences 

with no calculations. Some movements and joints are occluded due to the limitation of using a single view camera.  

The Microsoft Kinect (MS Kinect)[19], first introduced in November 2010, is a marker-less RGB-D motion capture device 

developed for the Xbox 360 and Xbox One. The most important functions of MS-Kinect are associated with tracking the user's 

movements against the interface. For such functionality, hardware components such as an infrared light emitter, multiple video 

cameras, an infrared camera, a vector of microphones, a three-axis accelerometer and a camera tilt motor are used[20]. 

In[21], a Gait analysis system was developed using the Kinect. This technique converted skeleton frames from a single Kinect 

into a feature vector. This work considered “center of mass” (COM) as center of hip, shoulder and spine joints. They have also 

captured stride times, and angular velocities in different phases of stride. However, further research for the use of this system for 

medical applications is needed. Also, their system was compared with reference values from Kinect and did not consider any other 

comparison method. In our work, we strictly compared the multimodal approach with the marker-based VICON system.   

In[22], the authors have proposed a low-cost marker-less MoCap system using a single Microsoft Kinect to obtain 3D joint 

position and extract Gait spatiotemporal features. Their method defines toe contact to mark starting and ending points of a full gait 



 

 

cycle (full walk) and generates Gait variables. They considered the variables speed, step length (distance between two steps), step 

time, stride length (distance between two strides) and stride time. This study defines what are some of the most important Gait 

spatiotemporal variables. They compared the system with the 3DMA (3D Motion Analysis) system [23] and concluded that poor 

detection of anatomic landmarks in lower body caused the system to be inaccurate to get some variables such as step time (diff 

between Kinect and 3DMA -0.17), and stride time (diff between Kinect and 3DMA -0.20).  

The studies above inform that the tracking of a single view MoCap has some limitations: the device cannot distinguish the frontal 

and back view of an individual, and, because the skeleton is generated by position estimation, errors in the detection can occur for 

lateral views. In addition, different joints have variations in accuracies e.g. lower joints are less accurate against upper joints[24].  

To overcome the limitations outlined above and to have a 360o of tracking area, increasing the field of view and skeleton 

detection, numerous authors have proposed the use of multiples Kinects for Gait analysis in their studies.  

In[25], a multi Kinect system was developed for gait assessment comparing results with VICON. The results have shown that 

multiple Kinects can be applied to capture human movement and assess Gait. They have applied the system to capture 

spatiotemporal gait variables and found correlation of 0.97 for right stride length, 0.83 for left stride length, and 0.92 for Gait time. 

Our results have shown correlation of 0.99 for Gait time and 0.95 for right and left stride length. 

Although these authors found out that their system can track motion in one, two or more viewpoints, their system is not capable 

of track full 360o motion and does not consider the view from the back. The proposed Gait system from this work considers the 

full 360o view from users and can capture 3D, spatial and temporal Gait variables. 

2.2 Inertial-based Technologies 

Inertial measurement Units (IMUs) can provide accurate temporal Gait variables using its internal sensors like accelerometers, 

gyroscopes, and magnetometers[26]. In[27], the authors used 9DOF IMUs for Gait temporal assessment and concluded that IMUs 

could be used to assess temporal Gait parameters with high correlation between IMUs and gold standard systems (0.97 for Gait 

time and 0.82 for stride time).  

 
Fig. 2.  Kinect arrangement setup. This setup was provided to ensure accurate data capture and synchronization. 

 
 

Fig. 1.  Gait System diagram containing 4 Kinect skeletons and 4 IMU data as inputs and a fused 360o skeleton, angles, and gait spatiotemporal variables  as 
outputs 



 

 

 The authors in [28] developed a real-time estimation of temporal Gait variables using 6DOF IMUs and have correlation results 

of 0.93 for stride time, and 0.97 for velocity against the GAITRite (GR) system[29]. These studies have shown that IMUs can offer 

a low-cost tool for temporal Gait variables. To have a system that can provide spatial and temporal gait variables at same time, a 

multimodal system can be a low-cost alternative for the gold standard Gait systems.    

Considering these works and to the best of the author’s knowledge, the novelty of the system proposed here lies in the fact that: 

(a) no works in the literature have integrated IMUs with a fused Kinect skeleton from multiple Kinect by the combination of 3D 

points (x, y, z) and quaternion orientation (w, i, j, k) generating in a 360o view; (b) it presents a real-time wireless synchronization 

and streaming protocol for multiple IMUs; (c) it supports easy set up and is low cost; (d) it provides 3D and kinematic data with 9 

degrees of freedom; (e) it enables fully body reconstruction; (f) it provides accurate join angles; (g) it is marker-less and can be 

used in any environment. To examine the utility of our system, we compared our system with VICON. In the next section, we 

introduce our Gait system and discuss the results of system testing. The proposed system framework, signal processing, and 

experimental protocol is also described. 

3. EXPERIMENTAL AND COMPUTATIONAL DETAILS 

 In this section, we give experimental and computational specifications of the Gait system and discuss coordinate 

transformations, MK skeleton fusion, IMU synchronization and angle evaluation. 

3.1 System setup 

The Gait assessment system captures and combines metadata of 4 MS Kinect cameras, and data from 4 Shimmer IMU. The 

multimodal architecture is composed by a Multi Kinect module, and an IMU module as per Fig.1. It also contains real-time 

synchronization protocol and orientation filter [30] .  

A) Multi Kinect Module  

Being aware of the limitations of a single Kinect such as occluded joints and limited area of movement (only front view), a 

module containing 4 MS Kinects was developed. Each Kinect was powered by its own computer (4 quadcore Intel Core i7, 16GB 

DDR3 RAM, 3.2Ghz and Graphics Processing Unit running the Kinect for Windows SDK 2.0[31]) and was connected to a master 

server throughout Transmission Control Protocol (TCP), which processed the data from each Kinect and generates the fused 3D 

skeleton simultaneously. Each Kinect captures a skeleton from one view perspective and the Multi-Kinect fusion enables full 

human body motion capture in 4 views being achieving 360o. The Multi Kinect system contains 3 components: input, processing, 

and output as per Fig.1. The input component consists of 4 skeletons (one for each Kinect). The processing component is 

responsible for synchronization, calibration, noise reduction, and skeleton fusion. The output component returns the original 4 

skeleton data and a fused 360° skeleton. For calibration purposes, every two adjacent Kinects are erected perpendicular to each 

other and all Kinects are kept at same height (0.8 meters), and the distance between Kinects in a square arrangement is 4.1 meters. 

The diagonal distance is 6m. This arrangement is kept for all experiments to provide consistent data (Fig. 2). 

Coordinate Transformations 

To use more than one Kinect at same time, the local 3D coordinate system of each Kinect must refer to same 3D global coordinate 

system. For this experiment, we chose the frontal Kinect (K0xyz) as the “master” Kinect and all other Kinects coordinate systems 

were changes into the K0 global coordinate system. For this purpose, transformation matrix must be discovered for each Kinect 

(K1-K3)xyz into K0xyz as in (eq. 1). Using the coordinate transformation relationship as per (eq. 3), one Kinect’s skeleton coordinate 

system can be transformed to the second Kinect’s skeleton coordinate system by applying a transformation matrix. As a result, the 

skeleton coordinates in both Kinect skeleton are representing the same coordinate data system. To discover the coordinate 

transformation matrix, we adopted a closed-form solution using unit quaternions to get a 4×4 transformation matrix[32]. 

Considering: 

𝑀𝐴𝐵 = (

𝑅[0][0] 𝑅[0][1] 𝑅[0][2] 𝑇𝑥

𝑅[1][0] 𝑅[1][1] 𝑅[1][2] 𝑇𝑦

𝑅[2][0] 𝑅[2][1] 𝑅[2][2] 𝑇𝑧

0 0 0 1

)          (1) 

 

a) MAB – 4x4 transformation matrix to change one local Kinect A into a global coordinate B. 

b) R[m][n] – The 3x3 rotation matrix 

c) T – The 3x1 translation vector 

 

To discover the transformation matrix of each Kinect (local coordinate system) into the K0 global coordinate system, we applied 

(2) as per: 

𝐵𝑖 = 𝑠𝑅 ∗ 𝐴𝑖 + 𝑇 (2) 



 

 

(
𝑥′
𝑦′

𝑧′

) = 𝑠 (

𝑅[0][0] 𝑅[0][1] 𝑅[0][2]

𝑅[1][0] 𝑅[1][1] 𝑅[1][2]

𝑅[2][0] 𝑅[2][1] 𝑅[2][2]

) ∗ (
𝑥
𝑦
𝑧
) + (

𝑇𝑥
𝑇𝑦
𝑇𝑧

) (3) 

d) Bi – 3xN matrix representing the unit quaternion of the Kinect global 3D point 

e) Ai – 3xN matrix representing the unit quaternion of the Kinect local 3D point 

f) s – Scale factor if needed (default 1) 

To obtain the transformation matrix and calibrate one Kinect skeleton to K0 skeleton, at least four joints must be detected by 

the two calibrating Kinect at the same time. We can assume that captured skeleton data is reliable when the person is standing in 

front of the sensor and two Kinects can track all 20 joints at the same time in a static trial. To get the more accurate transformation 

matrix, 120 frames of reliable skeleton data are captured. The sum of the 20 joints coordinate difference values between calibrated 

Kinect and KO is calculated as per (eq. 4). 

𝐶𝐷𝑉𝑖 = ∑ ([

𝐴𝑗 . 𝑥

𝐴𝑗. 𝑦
𝐴𝑗. 𝑧

1

] − 𝑀𝐴𝐵 ∗  [

𝐵. 𝑥
𝐵𝑗 . 𝑦
𝐵. 𝑧
1

])19
𝑗=0 , (𝑖 = 0,119) (4) 

g) CDVi – The ith coordinate difference sum in 120 frames 

h) Aj – The jth joint vector of Kinect A 

i) Bj – The jth joint vector of Kinect B 

 By comparing 120 sums of the coordinate difference values, the transformation matrix with minimum coordinate difference sum 

is chosen. Noted that because sampling frequency of the multi Kinect system is around 35Hz, an oversampling to 40Hz was 

employed to synchronize the multimodal system.  

The Multi Kinect Skeleton Fusion  

Each Kinect skeleton contains 20 3D joints. The Kinect SDK provides the joint tracking state of every joint and it is important 

in our study to determine each transformation matrix. This property has three values: “Tracked”, “Inferred”, and “NotTracked”. 

“Tracked” indicates that the joint is detected by the depth frame. “Inferred” indicates the joint is not being captured by the depth 

frame but there is a calculation to determine joint. “NotTracked” indicates that the joint position is indeterminable. This led us to 

calculate the skeleton confidence (SC) when generating transformation matrixes as in (5). This property is used to filter unreliable 

data (Skeletons with many “Inferred” and “NotTracked” joints) from Multi Kinects.  

𝑆𝐶𝑘 = ∑ 𝐽𝑆𝑗
19
𝑗=0 , (𝑘 = 0,… ,3;  𝑗 = 0,… ,19) (5) 

a) SCk – The skeleton confidence from the kth Kinect  

b) JSj – The jth joint tracking state (1 if “Tracked”, else 0) 

A single Kinect is ideal to track a user from a frontal side. Hence, for the back-side detection, the Kinect SDK still captures the 

user as a frontal view, capturing a noncurated skeleton. Based on the SC, we reduce 2 points for the SC calculation if it is a “back” 

Kinect (K2) as in (eq. 6). 

𝑆𝐶𝑘 = {
𝑆𝐶𝑘 − 2, 𝑖𝑓  𝑘𝑡ℎ = 𝐾2 "𝑏𝑎𝑐𝑘" 
𝑆𝐶𝑘,                                        𝑒𝑙𝑠𝑒 

, (𝑘 = 0,… ,3) (6) 

 Due to this limitation, not all Kinects can track a reliable skeleton of the user and the most reliable skeleton is selected as main 

skeleton. For being the “main” Kinect, K0 has the highest priority, followed by K1, K3, and K2. 

 Each 2 adjacent Kinects are fused to generate a fused skeleton. The joint weight of each joint of two Kinects are then calculated. 

To do calculate joint weights, each skeleton confidences and tracking states of both skeletons are combined as in (eq. 7) and based 

on the joint weight, smother fused skeletons are generated as per (eq. 8). The final fused skeleton is composed of all joints of the 

smoother skeletons. 

𝐽𝑊𝑘𝑗 = {
𝑆𝐶𝑘, 𝑖𝑓  JTS𝑘𝑗 = "𝑇𝑟𝑎𝑐𝑘𝑒𝑑" 

𝑆𝐶𝑘/2,                               𝑒𝑙𝑠𝑒 
 (7) 

c) SCk – The skeleton confidence from the kth Kinect  

d) JSj – The jth joint tracking state (1 if “Tracked”, else 0) 



 

 

SJ⃗⃗⃗  j =
JW1j.TAS⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  1j +JW2j.TAS⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  2j 

JW1j+JW2j
  (8) 

e) SJ⃗⃗⃗  j – The jth smoothed joint coordinate vector  

f) JW1 and JW2 – The jth joint weights of the two adjacent Kinects 

g) TAS⃗⃗ ⃗⃗ ⃗⃗  ⃗
1j and TAS⃗⃗ ⃗⃗ ⃗⃗  ⃗

2j  – The jth joint’s coordinate vectors of the two adjacent Kinects 

B) Inertial Measurement Unit Module and Synchronization  

  The IMU module in our work contains 4 IMU Shimmer sensors[33]. Data from these 4 IMU sensors was captured using 

Bluetooth following the capture protocol we developed. A multi-function MATLAB script was developed to perform the following 

capture protocol:  

• Sampling frequency of all sensors was defined to be 40Hz to generate the quaternion and avoid sensor drifting.  

• Internal configuration of each IMU to 9DOF; 

• Synchronization between the sensors;  

• Enabling start/stop of the IMU system data capture.  

 More specifically in terms of internal configuration of each IMU, 10 streams of data were captured: (i) 3D acceleration from 

accelerometer (Accxyz); (ii) 3D angular velocity from gyroscope (Gyroxyz); (iii) 3D magnetic field from a magnetometer (Magxyz), 

and (iv) a timestamp. As discussed later in this section, the Accxyz, Gyroxyz, Magxyz, were fused to provide quaternion representation.   

 The Shimmer IMU has enough internal memory to store sessions but each of the sensors has its own time clock. Hence, 

synchronization of all 4 IMU during data capture is required. An algorithm was designed and implemented to achieve 

synchronization. Pseudo code for this algorithm is provided in Algorithm 1. The function provided in the algorithm can promote 

real-time wireless synchronization and streaming protocol for multiple IMUs. This protocol fuses, in real-time, accelerometer, 

gyroscope, and magnetometer 3D data and generates the quaternion orientation. The data is synchronized with the computer CPU 

clock ensuring no data is lost. 

Algorithm 1: Real-time multi IMU streamer and synch 

function MultiIMU(comPorts, jointNames, captureTime) 

Input: com Ports (one for each IMU), joint names, and 

capture time 

Output: The .csv files containing each IMU data 

1:  if all sensors are connected through BT protocol then 

2:   Define IMU Handle Class instance; 

3:   Define sample rate to 40hz; 

4:   Set internal board to 9DOF; 

5:   Enable IMU internal sensors (Acc, Gyro, Mag); 

6:   Synchronize IMU clocks with PC clock 

7:   if IMUs are ready to capture then 

8:    Start assessment and capture 

9:    Audio alert 

10:   while elapsedTime < captureTime do 

11:    Write data in CVS file 

12:    IMU quaternion sensor fusion  

13:   end while 

14:   Stop assessment and capture 

15:   Audio alert 

14: Write the percentage of received packets to detect 

any lost information 

15:   end 

16:  Disconnect IMU 

21:  end 

22: end 
 

 



 

 

Angle Evaluation 

To represent orientation of a rigid body or frame coordinates in 3D space, a quaternion representation was employed. This 

complex number representation can define any spatial rotation around a fixed point or coordinate system. A quaternion 𝑞 =
 [𝑞0 𝑞1 𝑞2 𝑞3], can be used to get an angle θ about a fixed Euler axis as per (eq. 9) and Fig. 3. To get the angle between two joints 

with Shimmer, quaternion matrixes were obtained by the fusion of the 3 Shimmer internal modules (Accxyz, Gyroxyz, Magxyz,) using 

a Madgwick-based orientation filter[30].  

The quaternion generated by the function can represent spatial rotation of each shimmer and represents angle in each axis. 

Having each Euler angle, it is then possible to reference one Shimmer to another and get the angle between two sensors. The angle 

between two IMU was used as part of the walking evaluation during experiments. The integration of the multi Kinect skeleton and 

IMU Modules was achieved by combining unit quaternions from 2 Kinect joints Kxyz and quaternions from the IMU located in the 

mid-point of those 2 joints 𝑞 =  [𝑞0 𝑞1 𝑞2 𝑞3] by rotating the quaternion q around vector v directing the two Kinect joints (v = 

K1 - K2) as per (eq. 10) and Fig. 4. After getting the angles of IMU and Kinect, the angles are merged, and a combined output is 

generated. 

[
𝜙
𝜃
𝛹

] =  

[
 
 
 
 arctan

2(𝑞0 𝑞1 +𝑞2 𝑞3 )

1−2(𝑞1
2+𝑞2

2)

arcsin (2(𝑞0 𝑞2 − 𝑞3 𝑞1 ))

𝑎𝑟𝑐𝑡𝑎𝑛
2(𝑞0 𝑞3 +𝑞1 𝑞2 )

1−2(𝑞2
2+𝑞3

2) ]
 
 
 
 

 (9) 

 
𝜙 − 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑥 𝑎𝑥𝑖𝑠
𝜃 − 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑦 𝑎𝑥𝑖𝑠
𝛹 − 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑧 𝑎𝑥𝑖𝑠

 

 

[

𝑣1
′

𝑣2
′

𝑣3
′
] = [

(1 − 2𝑞2
2 − 2𝑞3

2) 2(𝑞1𝑞2 + 𝑞0 𝑞3) 2(𝑞1𝑞3 − 𝑞0 𝑞2)

2(𝑞1𝑞2 − 𝑞0 𝑞3) (1 − 2𝑞1
2 − 2𝑞3

2) 2(𝑞2𝑞3 + 𝑞0 𝑞1)

2(𝑞1𝑞3 + 𝑞0 𝑞2) 2(𝑞2𝑞3 − 𝑞0 𝑞1) (1 − 2𝑞1
2 − 2𝑞2

2)

] [

𝑣1

𝑣2

𝑣3

] (10) 

 

 

 

 

 

 

 

 
Fig. 3.  Rotation angles from IMU. 

 
Fig. 4.  Quaternion integration. 3D points from Kinect(xyz) are combined with 

quaternion q = [q0 q1 q2 q3]. 

  



 

 

4. EXPERIMENTS 

4.1 Protocol 

The experiments with the Gait system adhere to the approach taken in numerous related works in the literature [34-36] and the 

protocol employed had the following stages:  

• Participants recruitment. 

• Information and consent forms. 

• Joint measurements. 

• Plug-in Gait marker placement[37]. 

• 8 to 12 Trials per participant (including 1 trial for calibration). 

For this study, 8 healthy participants completed 12 trials each, providing a total of 96 individual datasets. For each trial, the 

participant was asked to jump on a force plate, walk towards the direction of the first Kinect K0 and finish with a second jump. 

During each trial, motion was captured using our Gait system and VICON simultaneously, hence allowing direct comparison 

between the two systems. 

Before the experiment, an information sheet was given to each participant to explain the experiment, purposes of the project, 

and data confidentiality. The participant was also required to sign a consent form. As part of the set-up stage of the participant, 

reflective markers were placed on the body following the Plug-In-Gait methodology from VICON[37]. Each marker placement 

and measurement took approximately 45 minutes. After mark placement, joint measurements were taken on the following body 

segments: arms, legs, height, hip, and shoulders. Finally, the 4 Shimmer IMUs were attached to the participant's body located at 

mid-points of chest, sacrum, thigh, and tibia (Fig. 5). Before the data collection participants, static trials were performed to calibrate 

the Multi Kinect system, the IMUs, and VICON systems (Fig. 6). A single trial was achieved when the participant completed a 

full gait cycle 0-100%. The three streams of data (Kinects, Shimmer, and VICON) were normalized and synchronized for data 

processing.   

5. RESULTS AND DISCUSSION 

 Because the analysis is done with different inputs, the dataset for processing consisted of 3 main frames of information: Multi-

Kinect system, Shimmers, and VICON. The Multi Kinect dataset of 5 skeletons (4 single Kinect Skeletons and 1 fused Kinect 

Skeleton) was stored in a .csv file. Each skeleton was composed of 20 joint points. Data from Shimmer IMU was stored in a matrix 

format as described on section III C. The VICON dataset, like Kinect, was in 3D position format, and was captured (VICONxyz) 

on a per reflective marker basis. During each trial, some of the markers were occluded (a known problem with VICON). Hence, 

post the test, each VICON trial needed to be processed separately, frame per frame, ensure all gaps were filled using spline fill and 

pattern fill gap filling operations[38]. 

To compare VICON and each Kinect three tasks needed to be completed: (1) select Kinect joints that can be related to VICON 

reflective markers (e.g. same body segment; right arm, right leg, hip); (2) change VICON local coordinate system into Kinect 

global coordinate system following the same closed solution for unit quaternions as per[32]; (3) synchronize both systems with an 

external event. For (3), as outlined above, a jump in a force plate was used and as such each event captured by the force plate 

generated a trigger for the system. 

 
Fig. 5.  IMU sensor placement and Euler rotation angle. Each IMU sensor has 
its own coordinate system and was calibrated before trials to ensure they are in 

the same coordinate system.  

  

 
Fig. 6. Static trials. These trials calibrated all streams of data: Vicon and Gait 

system. Raw data from each sensor was also saved for all trials.  
  



 

 

 As per Fig. 7, 12 joints were selected via the Plug-in-Gait and were compared with respective Kinect joints. These were: right 

shoulder (3_RSHO), shoulder centre (5_CLAV), left shoulder (6_LSHO), spine (10_STRN), right hip (12_RASI), left hip 

(13_LASI), right knee (14_RKNE), left knee (15_LKNE), right ankle (16_RANK), left ankle (17_LANK), right foot (18_RTOE), 

and left foot (19_LTOE); all of which are important for GAIT variable extraction and analysis. Each VICON marker is attached 

onto skin whist Kinect joints are inferred in the anatomic position of each joint as per Fig. 8.  

5.1 Gait Prediction and Confidence Bands 

Hip and knee angles were evaluated as these joints are weight-bearing joints and most susceptible to require bone surgical 

interventions[39-41]. To evaluate angles from all data sets, two approaches were used: first, having three distinct points in space 

and second: from the quaternion function and Euler angles from two IMU. The angle between 3 points is equivalent of the angle 

between two vectors defined by same 3 points (eq. 11) and (eq. 12). Considering 3 points P1, P2, and P3 and vectors u and v: 

𝑢 =  𝑃1 − 𝑃2;  𝑣 = 𝑃3 − 𝑃2 (11) 

𝜃 = 𝑎𝑟𝑐𝑜𝑠 (
𝑢.𝑣

|𝑢||𝑣|
) (12) 

 

 
Fig. 7.  (a) Kinect joint index, (b) VICON Plug-in-Gait marker placement. Each Kinect joint was related to a VICON marker. 

 

 
Fig. 8.  3D plot of VICON and Multi Kinect points. Each VICON point is captured by an external marker onto skin. The Kinect joint is inferred by the real 3D 

anatomic position. 

  



 

 

Gait analysis often utilizes continuous curves to evaluate a full Gait cycle. The cycle happens when the participant steps on the 

ground (heel strike), removes the heel stepping with other foot (initial swing), and step on the ground with the same foot in heel 

strike (terminal swing)[42]. Gait angle data is not composed of single points and cannot be statistically evaluated using common 

statistical analysis[43]. When dealing with single observations of data, prediction intervals are made for a probability interval. For 

continuous data, the analogous prediction contains a new prediction every time a new curve is added from population[44]. This 

method is called bootstrap and can give prediction intervals for Gait curves at any confidence interval[45]. 

 
Fig. 9. Knee flexion angles from Multi Kinect module (red) and confidence 

bands of 95% . 

 
Fig. 10. Knee flexion angles from IMU module (red) and confidence bands of 
95% . 

  

 
Fig. 11. Knee flexion angles from Gait system (blue) and confidence band of 

95%. 
 

 
Fig. 12. Hip flexion angles from Multi Kinect module (red) and confidence 

band of 95%. 

 

 
Fig. 13. Hip flexion angles from IMU module (red) and confidence band of 95%. 

 

 
Fig. 14. Hip flexion angles from Gait system (blue) and confidence band of 

95%. 

 



 

 

 Fig. 9, Fig. 10, and Fig. 11 present 95% bootstrap prediction band of VICON compared with Multi Kinect, IMU, and Gait 

system. The graphs in red represent the Multi Kinect and IMU outputs whereas the blue represents the Gait System representation. 

The flexion angles are defined in full gait cycle. Fig. 12, Fig. 13, and Fig. 14 show the comparison for hip flexion angles for 95% 

bootstrap prediction band. The area between two black curves represent the VICON prediction band. Any curve outside this area 

does not fit the VICON curve, hence it cannot be used to evaluate angles. From the figures presented, the x axis shows the 

percentages of gait from 0 to 100%. The initial phase 0% happens when the heel contacts the ground and 100% when the same 

heel contacts the ground. The y axis represents flexion angles of hip and knee.  

 For the Knee and Hip flexion curves from Multi Kinect module (Fig. 9 and Fig. 12), since there is a processing time in generating 

a fused skeleton, filtering noise, and calibrating coordinates, there is also a delay in outputting of Gait graphs and might be an issue 

where applications demand a precise timing information. The use of the MSc Kinect in applications at higher speed (e.g. Spiriting, 

fast movements, sports mechanics) is discouraged. The prediction band informs that for initial knee flexion angles (0o - 20o) and 

maximum flexion (60o - 80o degrees), the MK module was outside the prediction band and could not represent the VICON curve 

for all degrees. The hip flexion curve for the 60o - 80o angles is also outside the prediction band of VICON.  

 For the Knee and Hip flexion curves from IMU module (Fig. 10 and Fig. 13), there is no delay in outputting Gait graphs. The 

IMUs can provide information at higher sample rates when compared with Kinect. Initial flexion angles from knee and hip are 

outside prediction band. The IMU module can represent Gait graphs of hip and knee. However, they cannot represent 3D points 

and could not be used in applications where 3D and body representation are essential.   

 The proposed Gait system by the combination of MK and IMU could provide knee and hip angles from gait as per Fig. 11 and 

Fig. 14. From these graphs, we can see visual representation of the gait cycle graphs of the Gait System. The analysis here 

considered the angles from knee and hip for being the weight bearing joints related to human Gait. Based on the 95% bootstrap 

prediction, our Gait system is capable of replicate flexion angles of knee and hip and kept the output within the prediction bands. 

Spatiotemporal analysis was also provided for a complete human Gait analysis  

5.2 Spatiotemporal results  

To evaluate the Gait system, in addition to Gait graphs, it is also important to evaluate spatial variables like Gait and stride 

length, and temporal variables such as Gait cycle time, stride times, and velocity. For those variables, we have performed an 

analysis of spatiotemporal variables of walk. All variables of Gait were also compared with the VICON system.  

Table I shows results for spatiotemporal Gait variables. It includes statistic results for an independent t-test. Assuming equal 

variances, we have found that both groups VICON and Gait system are comparable, thus the system outputs similar values. We 

found out lower accuracy of the MS Kinect for some lower joints like ankles and toes. This could interfere on the capability of the 

system to provide Gait length (r = 0.88). We found out the high correlation for Gait cycle time (r = 0.99), thus the system could 

constantly capture the human Gait from all trials. Considering works in literature[25, 27], our system is capable of outputting 

spatiotemporal variables with higher correlation between Gait system and VICON. 

TABLE I 
SPATIOTEMPORAL RESULTS – VICON VS. GAIT SYSTEM 

Variable 

Sig (2-tailed) 
Group Mean Sd 

Pearson’s 

Correlation 

(r) 

Gait Cycle (s) VICON 1.308 0.037 0.996 

Sig: 0.714 Gait System 1.300 0.036  

Right Stride (s) VICON 0.709 0.022 0.956 

Sig: 0.390 Gait System 0.700 0.014  

Left Stride (s) VICON 0.598 0.025 0.908 

Sig: 0.901 Gait System 0.600 0.029  

Gait length (m) VICON 0.958 0.152 0.886 
Sig: 0.840 Gait System 0.941 0.160  

Stride length (m) VICON 0.585 0.046 0.950 

Sig: 0.087 Gait System 0.535 0.053  

Velocity (m/s) VICON 0.734 0.127 0.919 

Sig: 0.892 Gait System 0.724 0.130  

This table compares VICON with the Gait System. The results from the sigma 

value explains that there is no significant difference between two groups.  

Spatiotemporal units are defined; s = seconds, m = meters, m/s = meters per 

second of Gait cycle. 



 

 

6. CONCLUSION 

In this work, we have presented a low-cost GAIT analysis system based on the integration of a Multi Kinect system and Shimmer 

inertial sensors. The novel multimodal system fuses IMU sensors (acceleration, gyroscope, and magnetometer) to get quaternion 

orientation and combines IMU data with 3D points of Multiple Microsoft Kinects (which employ RGB-D cameras and skeleton 

data) and output spatiotemporal Gait variables. It also includes a novel synchronization protocol for integration and synchronization 

of the multimodal modules in the entire system.  

A summary of capabilities of our Gait system with other techniques described in this paper is shown on Table II. The system 

performance was compared with the gold standard VICON system. Table II informs that the VICON system is capable to promote 

3D information and can provide all gait variables, however it still uses markers to capture 3D points and it is not low-cost. Both 

modules of the proposed Gait system can contribute to have a marker-less system, complete 3D and 360o, and can provide Gait 

spatiotemporal variables.  

The results presented analysis and discussion on signals differences between our proposed system and VICON; as well as angles 

estimation differences from inertial sensors integration. Our analysis has demonstrated the utility of our multimodal system 

(inclusive of its limitations). Based on this, many potential use cases of the Gait system can be proposed. The proposed system is 

cheaper; easy to be set up; show clear and easily interpretable results; marker-less; supports 360 degrees of motion analysis; is 

easily portable and does not require large set up space or environment. Future work will include the use of Gait analysis system 

the use it in real-time as an immersive multimedia haptic/Augmented Reality feedback tool for Gait re-education. 
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