
An Empirical Comparison of Syllabuses for
Curriculum Learning

Mark Collier and Joeran Beel

Trinity College Dublin
{mcollier,joeran.beel}@tcd.ie

Abstract. Syllabuses for curriculum learning have been developed on an
ad-hoc, per task basis and little is known about the relative performance
of different syllabuses. We identify a number of syllabuses used in the
literature. We compare the identified syllabuses based on their effect
on the speed of learning and generalization ability of a LSTM network
on three sequential learning tasks. We find that the choice of syllabus
has limited effect on the generalization ability of a trained network. In
terms of speed of learning our results demonstrate that the best syllabus
is task dependent but that a recently proposed automated curriculum
learning approach - Prediction Gain, performs very competitively against
all identified hand-crafted syllabuses. The best performing hand-crafted
syllabus which we term Look Back and Forward combines a syllabus
which steps through tasks in the order of their difficulty with a uniform
distribution over all tasks. Our experimental results provide an empirical
basis for the choice of syllabus on a new problem that could benefit from
curriculum learning. Additionally, insights derived from our results shed
light on how to successfully design new syllabuses.

1 Introduction

Curriculum learning is an approach to training neural networks inspired by hu-
man learning. Humans learn skills such as maths and languages by tackling in-
creasingly difficult tasks. It has long been proposed [5, 17] that neural networks
could benefit from a similar approach to learning. Curriculum learning involves
presenting examples in some order during training such as to aid learning. On
some tasks, curriculum learning has been shown to be necessary for learning
[10, 25, 18] and to improve learning speed [6, 24] and generalization ability [3] on
other tasks.

For any particular application of curriculum learning the two key components
of this approach to training neural networks are the division of the training data
into tasks of varying difficulty and the definition of a syllabus. We follow [6] in
defining a syllabus to be a “time-varying sequence of distributions over tasks”.
Where a task is defined to be a subset of all training examples. At any instance
during training a batch called an example is drawn from some task and presented
to the network. For example in machine translation we could split the training
data of source and target language pairs into tasks defined by the length of the



source sentence. We could then define a syllabus in which the network was first
trained on short sentences and gradually moving onto longer, potentially more
difficult sentences.

In this work we focus on the effect of syllabus design on curriculum learn-
ing. Syllabuses fall in two main categories. Hand-crafted syllabuses [24, 25, 10, 3]
define an ordering of tasks and a level of success on each task to be attained
before moving onto the next point in the syllabus. The level of success on a task
is typically evaluated periodically on a validation set.

Automated syllabuses [6, 19] attempt to solve the problem of having to hand-
design a syllabus and choosing the level success that determines progression from
task to task required when using a hand-crafted syllabus. Automated syllabuses
only require the engineer to define a set of tasks (potentially ordered) and exam-
ples are chosen by some automatic mechanism e.g. in proportion with the error
rate on that task.

The choice of syllabus has a significant effect on the efficacy of curriculum
learning for a particular problem [6, 24]. Syllabuses have been primarily devel-
oped on an ad-hoc basis for individual problems and only limited empirical
comparison of different syllabuses has been conducted [6, 24]. Additionally ex-
planations for why curriculum learning works have mostly been grounded in
learning theory [5, 14, 3] rather than empirical results.

We consider curriculum learning in two settings [6]. In the multi-task setting,
after training we are concerned with the performance of the network on all tasks.
Whereas in the target-task setting, after training we are concerned only with the
performance of the network on a single “target” task.

In this work we evaluate how the choice of syllabus effects the learning speed
and generalization ability of neural networks in the multi-task and target-task
settings. We train LSTM [12] networks on three synthetic sequence learning tasks
[9]. Sequence learning tasks are naturally suited to curriculum learning as it is
often assumed that the difficulty of the task increases with the length of the input
sequence [24, 18, 4, 21, 10]. LSTMs have achieved state of the art performance in
many sequence learning tasks [7, 23, 8]. It is common to use LSTMs trained on
synthetic tasks for experimental results in curriculum learning [24, 6, 4, 21, 14].

Our results provide an extensive empirical comparison of the effect of cur-
riculum learning syllabuses on speed of learning and generalization ability. Our
results reveal insights on why curriculum learning outperforms standard train-
ing approaches and the key components of successful syllabuses. Thus our work
provides evidence for the choice of syllabus in new applications of curriculum
learning and provides the basis for future work in syllabus design.

2 Related Work

Bengio, et al. [3] examined curriculum learning under hand-crafted syllabuses.
They found that a Perceptron trained on a toy task with a syllabus which steps
through tasks in their order of difficulty learns faster than a Perceptron trained
on randomly sampled examples. Their work demonstrated the potential utility of



curriculum learning, but the division between curriculum learning and transfer
learning was unclear in their experiments and only a basic hand-crafted syllabus
was considered.

Zaremba and Sutskever [24] showed that curriculum learning was necessary
for a LSTM network to learn to “execute” simple Python programs. The authors
provide an empirical comparison of two hand-crafted syllabuses. Their problem
had two dimensions of difficulty the length of the program and the level of
nesting. They defined a syllabus which they call the Combined Strategy that
combines the basic approach of stepping through the tasks one at a time with
a uniform distribution over all tasks. The Combined Strategy syllabus lead to
faster learning and better final performance on the target task than baseline
strategies.

The authors hypothesize that by including examples from tasks more difficult
than the current task, the LSTM network has an incentive to use only a portion
of its memory to solve the current task in the syllabus. The authors argue that
syllabuses which do not provide tasks from future points on the syllabus incur
a significant time penalty at each point of progression as the network must
undergo substantial retraining of the network weights to adapt to the new task.
In a separate work, the same authors proposed a slightly more complex syllabus
with the same goal of sampling tasks based on a syllabus with “non-negligible
mass over the hardest difficulty levels” which enabled reinforcement learning of
a discrete Neural Turing Machine [22], where a network trained directly on the
target task failed to learn.

Zaremba and Sutskever only considered syllabuses with a linear progression
through the tasks in order of difficulty. Yet it has been argued that linear pro-
gression through the tasks in a syllabus can result in quadratic training time in
the length of the sequences for a given problem [18]. Following a simple syllabus
of drawing tasks from a uniform distribution over all tasks up to the current
task and exponentially increasing the level of difficulty of the problem at each
progression point it is possible to scale a variant of the Neural Turing Machine
[9] to sequences of length 4,000 [18].

Graves, et al. [6] propose an automated syllabus by treating the selection of
the task from which to draw the next example from as a stochastic adversarial
multi-armed bandit problem [1]. Their paper examines six definitions of a reward
function to promote learning. The reward functions split into two classes, those
driven by the improvement in the loss of the network as a result of being trained
on an example from a particular task and those driven by an increase in network
complexity motivated by the Minimum Description Length principle [20, 11]. The
authors show that the best reward function from each class results in non-uniform
syllabuses that on some tasks converge to an optimal solution twice as fast as
a baseline uniform sampling syllabus. Across all tasks however the authors find
that the uniform sampling syllabus provides a strong baseline. Other automated
syllabuses have been used successfully [19, 15].

Curriculum learning is not widely applied in practical machine learning and
has not always been successfully applied in research settings either [2]. “Catas-



trophic forgetting” of previously learned tasks may be responsible for poor gener-
alization performance after training [16]. Developing syllabuses robust to catas-
trophic forgetting may be critical to achieving wider application of curriculum
learning.

3 Methodology

3.1 Syllabuses

We considered six syllabuses that captured the main features of those identified
in the literature. The six syllabuses include three hand-crafted, one automated
and two benchmark syllabuses. Below, we follow the notation that there are
T tasks on the syllabus that are ordered in difficulty from 1 to T and that
the learner’s current task is denoted C. A full distribution over tasks for each
syllabus is given in table 1.

Table 1: Distribution over tasks for syllabuses.
Syllabus C Uniform(1, max{1, C-1}) Uniform(1, T) T

Naive 100% - - -
Look Back 90% 10% - -
Look Back and Forward 80% - 20% -
None - - - 100%
Uniform - - 100% -
Prediction Gain - - - -

Under the Naive Strategy proposed by by Zaremba and Sutskever [24] ex-
amples at each timestep are sampled solely from the current point C on the
syllabus. Once the learner reaches the defined level of success for progression
on the current task as measured on a validation set, the learner moves onto the
next task on the syllabus and all examples are now drawn from that task. We
call this syllabus Naive.

It was observed that while the Naive syllabus increased the rate of learning
on certain tasks, the learner rapidly forgot previously learned tasks [19]. This is
undesirable in the multi-task setting and it was proposed [10] that drawing some
examples from previous tasks on the syllabus may prevent this catastrophic for-
getting. We define a syllabus which we call Look Back in which a fixed percentage
of examples are drawn from a Uniform distribution over all previous tasks on
the syllabus and the remainder are drawn from the current task on the syllabus
as per the Naive syllabus. In practice for our experiments we chose to draw 10%
of tasks from previous points on the syllabus, with the remaining 90% coming
from the current task.

While the Look Back syllabus addresses the issue of catastrophic forgetting,
it was further hypothesized that by only drawing examples from the current



and past tasks in the syllabus considerable retraining of the network weights
would be required as the learner moved forward through the syllabus [24]. A
syllabus which we call Look Back and Forward addresses this issue. Look Back
and Forward corresponds to the syllabus which Zaremba and Sutskever call the
Combined Strategy [24]. With the Look Back and Forward syllabus a fixed per-
centage of examples are drawn from a Uniform distribution over all tasks on
the syllabus with the remaining examples drawn from the current task. Thus,
when on the early tasks in the syllabus almost all examples drawn from the
uniform distribution will be drawn from future tasks on the syllabus. Once the
learner approaches the target task almost all such examples will be drawn from
previously learned tasks. In this way the Look Back and Forward syllabus seeks
to address both the issue of catastrophic forgetting and the potential retraining
required when the learner is not given examples from upcoming tasks on the
syllabus. In our experiments, we drew 20% of examples from the Uniform dis-
tribution over all tasks, with the remaining 80% coming from the current task
on the syllabus. We note that for the Look Back and Look Back and Forward
syllabuses, we chose the percentage splits through experimentation.

We adopt the best performing automated syllabus consistent with maximum
likelihood training from recent work on automated curriculum learning [6], which
the authors call Prediction Gain. The authors follow their general approach of
selecting the next task based on the Exp3.S algorithm [1] for stochastic adver-
sarial multi-armed bandits. The reward function for Prediction Gain is defined
to be the scaled reduction in loss L on the same example x after training on that
example, i.e. the reward to the bandit is defined to be L(x, θ)−L(x, θ′) rescaled
to the [−1, 1] range by a simple procedure [6], where θ and θ′ are the weights
parameterizing the network before and after training on x respectively.

None is our benchmark syllabus in the target-task setting, for which we draw
all examples from the target task in the syllabus.

As our benchmark syllabus in the multi-task setting we draw examples from a
Uniform distribution over all tasks. Unsurprisingly, we call this syllabus Uniform.
This syllabus can also be seen as a simple syllabus in the target-task setting and
as mentioned above has been found to be a strong benchmark in this setting [6].

In practice for the above hand-crafted syllabuses we, as other authors have
found [18], that learning was slow if the learner progressed through the syllabus
one task at a time. To alleviate this, for each of these syllabuses after meeting
the defined success metric on a task instead of moving onto the next task in the
syllabus we followed an exponential strategy of doubling the current point on the
syllabus along one dimension of difficulty on the problem. For the Repeat Copy
problem (described below) which has two dimensions of difficulty, we alternated
which dimension of difficulty to double.

3.2 Benchmark Problems

As noted above curriculum learning has primarily been applied to sequence learn-
ing problems where the sequence length is typically used to divide the data into
tasks ordered by difficulty. We follow this approach by adopting three synthetic



sequence learning problems that have been shown to be difficult for LSTMs to
solve [9].

Copy - for the Copy problem, the network is fed a sequence of random bit
vectors followed by an end of sequence marker. The network must then output
the input sequence. This requires the network to store the input sequence and
then read it back from memory. In our experiments we trained on input sequences
up to 32 in length with 8-dimensional random bit vectors.

Repeat Copy - similarly to the Copy problem, with Repeat Copy the net-
work is fed an input sequence of random bit vectors. Unlike the Copy problem,
this is followed by a scalar that indicates how many times the network should
repeat the input sequence in its output sequence. In our experiments we trained
on input sequences up to 13 in length with maximum number of repeats set to
13, again with 8-dimensional random bit vectors. This means the target task for
Repeat Copy required an output sequence of length 169.

Associative Recall - Associative Recall is also a sequence learning problem,
with sequences consisting of random bit vectors. In this case the inputs are
divided into items, with each item consisting of 3 x 6-dimensional vectors. After
being fed a sequence of items and an end of sequence marker, the network is
then fed a query item which is an item from the input sequence. The correct
output is the next item in the input sequence after the query item. We trained
on sequences of up to 12 items, thus our target task contained input sequences
of 36 6-dimensional random bit vectors followed by the query item.

3.3 Experiments

For all of the above problems we ran experiments1 to measure the effect of
syllabus choice on speed of learning in both the target-task and multi-task setting
and the generalization ability of the trained network. For each problem, syllabus
pair we ran training from 10 different random initializations.

In order to measure the speed of learning we measured the performance
during training every 200 steps on two held-out validation sets, one for the
target-task and one for the multi-task setting. The validation set for the target-
task setting consisted solely of examples from the target task on that problem.
Whereas, the validation set for the multi-task setting consisted of examples uni-
formly distributed over all tasks in the syllabus. The number of examples in the
target-task and multi-task validation sets were 512 and 1024 respectively for all
experiments.

To test the effect of syllabus choice on the generalization ability of our net-
works, for each problem we created test sets of 384 examples which gradually
increased the difficulty of the problem. For the Copy problem which was trained
with a target task of sequences of length 32, the test set comprised on sequences
of length 40.

1 Source code to replicate our experiments can be found here: https://github.com/
MarkPKCollier/CurriculumLearningFYP



For Repeat Copy we wished to test the generalization ability of the trained
networks along both dimensions of difficulty of the problem - sequence length
and number of repeats. We created two test sets, one comprised of sequences of
length 16 with the number of repeats fixed to 13. The other test set comprised
of sequences of length 13 with the number of repeats set to 16. Our test set for
Associative Recall consisted of sequences of 16 items, having been trained with
a target task of 12 items. We measured the performance of each network on the
test set when the network’s error on the validation set was lowest.

In all our experiments we used a stacked 3 x 256 units LSTM network, with
a cross-entropy loss function. For all networks and syllabuses we used the Adam
optimizer [13] with an initial learning rate of 0.01. We used a batch size of 32 for
all experiments, with each batch containing only examples from a single task.
We defined the maximum error achieved on a task before progression to the next
point on the syllabus to be 2 bit errors per sequence for the Copy problem and
1 bit error per sequence on the Repeat Copy and Associative Recall problems.

4 Results

4.1 Copy

Figure 1 shows the median learning curves over the 10 training runs per syllabus
for the target-task and multi-task setting. Training directly on the target task
converges to near zero error 2.2 times faster than the next fastest syllabus -
Prediction Gain. This demonstrates that in the target-task setting a syllabus
is not required to solve the task. Prediction Gain adapts most rapidly to this
situation and learns to focus on tasks close to the target task. Only the Look
Back and Forward syllabus manages to reach near zero error in the target-task
setting in the time provided. All the hand-crafted syllabuses must reach the
same level of success on a task to progress so the performance of Look Back and
Forward relative to the other hand-crafted syllabuses shows that sampling from
tasks ahead of the current task in the syllabus allows much faster progression
through the tasks.

(a) target-task setting (b) multi-task setting

Fig. 1: Median Copy learning curves

As expected, in the multi-task setting training directly on the target task per-
forms very poorly when evaluated on all tasks. Despite making some progress



towards the target task, the Naive syllabus shows almost no improvement on
random performance in the multi-task setting. This demonstrates that the net-
work rapidly forgets previously learned tasks if not shown further examples of
them. Prediction Gain, Uniform and Look Back and Forward all converge to
near zero error in the multi-task setting at similar rates, fig. 1.

Figure 2 shows the range of error achieved by the 10 trained networks for each
syllabus when the networks are asked to generalize to sequences of length 40 on
the Copy problem. Despite the networks of three syllabuses converging to near
zero error on the target task with sequences of length 32 none of the networks
succeed in generalizing to sequences of length 40. On sequences of length 40, the
Prediction Gain and the Uniform syllabus demonstrate similar performance and
have approximately 1.35-1.59 times lower median error than the Look Back and
Forward, None and Look Back Syllabuses. There is substantial overlap in the
range of generalization error for all syllabuses, so we cannot say that any one
syllabus clearly outperforms the others in terms of improving generalization on
the Copy problem.

Fig. 2: Copy - Generalization to sequences of length 40. Each box plot gives the
median (yellow dot), upper and lower quartiles (blue box) and min and max
error (black lines) on the 10 training runs.

4.2 Repeat Copy

Figure 3 shows the median learning curves for each syllabus on the Repeat Copy
problem for the target-task and multi-task setting. Unlike for the Copy problem
In the target-task setting for the Repeat Copy problem, the network fails to
learn a solution in the time provided by training directly on the target task, fig.
3. Interestingly the three hand-crafted syllabuses converge to near zero error at
approximately the same time and 3.5 times faster than the Uniform syllabus
which is the next fastest. This is a clear win for the hand-crafted syllabuses over
the benchmark and automated syllabuses.

The Uniform syllabus converges to near zero error twice as fast as Prediction
Gain. It is unclear why Prediction Gain has slower convergence although we
posit a potential explanation - that scaling the rewards by the length of the input
sequence as per the specification [6] may bias the bandit towards tasks with high
repeats as such tasks incur no penalty for their added difficulty. This highlights



that despite the automated nature of Prediction Gain’s syllabus generation it
still relies on several tunable parameters.

(a) target-task setting (b) multi-task setting

Fig. 3: Median Repeat Copy learning curves

Despite the Uniform syllabus’ slow convergence on the target task, in the
multi-task setting training on the same distribution as the test distribution is
beneficial, as would be expected in non curriculum learning settings, fig. 3. The
Uniform syllabus reaches near zero error 1.35 times faster than Look Back and
Forward, the next fastest syllabus.

All the syllabuses but Prediction Gain and None consistently generalize with
near zero error to sequences of length 16 on Repeat Copy, fig. 4. Prediction
Gain’s wide generalization error range is explained by the fact that training
with Prediction Gain on the Repeat Copy problem is unstable and 4 out of the
10 training runs failed to converge to near zero error. Whereas when we attempt
to increase the number of repeats, all the syllabuses fail to generalize successfully,
fig. 4, this is consistent with previous results [6].

(a) Generalization to input sequences of
length 16, with the number of repeats
fixed to 13

(b) Generalization to 16 repeats, with
the input sequence fixed to length 13

Fig. 4: Repeat Copy - Generalization performance.

4.3 Associative Recall

Figure 5 shows the median learning curves for each syllabus on Associative Recall
for the target-task and multi-task setting. Only Prediction Gain converges to



a near zero error solution to the Associative Recall problem in either setting.
The Uniform and Look Back and Forward syllabuses perform similarly in both
settings and make some progress towards a low error solution. The Naive syllabus
makes some progress towards learning the target-task and perhaps given enough
time would learn a solution to the task. The Look Back and None syllabuses
make very limited progress from random initialization in either setting.

(a) target-task setting (b) multi-task setting

Fig. 5: Median Associative Recall learning curves

Despite converging to a near zero error solution in both the target-task and
multi-task setting, figure 6 shows that Prediction Gain fails to generalize with
similar error to sequences of 16 items. As expected, the other syllabuses which
do not reach near zero error on the target task also exhibit similarly high gen-
eralization error.

Fig. 6: Associative Recall - Generalization to sequences with 16 items.

5 Conclusion

The above experiments demonstrate that no single syllabuses in our comparison
has an advantage in all problems (Copy, Repeat Copy, Associative Recall) or
settings (target-task, multi-task). Over the three problems, the Look Back and
Forward syllabus learned consistently faster than the other two hand-crafted syl-
labuses; Look Back and Naive. Prediction Gain was fastest of the non-benchmark
syllabuses to converge to near zero error solutions on the Copy and Associative
Recall problems but the opposite was true on Repeat Copy (when training with



Prediction Gain was unstable). We found that the Uniform syllabus provided
a strong baseline in the target-task setting, which agrees with previous results
[6]. In the multi-task setting uniformly sampling from all tasks leads to the
fastest learning in two of the three problems. No syllabus consistently improved
generalization on any of the above problems.

Including examples from previously learned tasks is vital to prevent catas-
trophic forgetting of these tasks. For example, the Naive syllabus which makes
progress towards the target-task on each benchmark problem, is among the two
slowest learners in the multi-task setting on all problems. This demonstrates
that the network rapidly forgets previously learned tasks when it is no longer
presented with them.

Including examples from future tasks on the syllabus provided substantial
increases in speed of learning. In particular, the Look Back and Forward syllabus
converged to a lower error solution in both settings on all problems than the Look
Back syllabus which does not include examples from future tasks on the syllabus
but is otherwise identical.

Despite being compared to stronger syllabuses than in the original paper, Pre-
diction Gain performed competitively. We conclude that automated approaches
to syllabus design in curriculum learning may be a fruitful future area of de-
velopment but that further work is required on how to set the hyperparameters
governing the existing automated approaches.

Our empirical results provide the basis for the choice of syllabus in new
applications of curriculum learning. In the multi-task setting we recommend
using the non curriculum learning syllabus of uniformly sampling from all tasks.
Other syllabuses may provide marginal gains on some problems in the multi-
task setting, but this is not reliable across all problems and requires additional
hyperparameter tuning. We recommend that when applying curriculum learning
to problems in the target-task setting, practitioners use either Prediction Gain
or the Look Back and Forward syllabus.
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